Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep ; 29(10): 3160-3172.e4, 2019 12 03.
Article in English | MEDLINE | ID: mdl-31801080

ABSTRACT

Replication of a damaged DNA template can threaten the integrity of the genome, requiring the use of various mechanisms to tolerate DNA lesions. The Smc5/6 complex, together with the Nse2/Mms21 SUMO ligase, plays essential roles in genome stability through undefined tasks at damaged replication forks. Various subunits within the Smc5/6 complex are substrates of Nse2, but we currently do not know the role of these modifications. Here we show that sumoylation of Smc5 is targeted to its coiled-coil domain, is upregulated by replication fork damage, and participates in bypass of DNA lesions. smc5-KR mutant cells display defects in formation of sister chromatid junctions and higher translesion synthesis. Also, we provide evidence indicating that Smc5 sumoylation modulates Mph1-dependent fork regression, acting synergistically with other pathways to promote chromosome disjunction. We propose that sumoylation of Smc5 enhances physical remodeling of damaged forks, avoiding the use of a more mutagenic tolerance pathway.


Subject(s)
Cell Cycle Proteins/genetics , DNA Replication/genetics , Saccharomyces cerevisiae Proteins/genetics , Sumoylation/genetics , Chromatids/genetics , Chromosomes/genetics , DNA/genetics , DNA Damage/genetics , DNA Repair/genetics , Saccharomyces cerevisiae/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...