Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Carcinogenesis ; 34(11): 2629-38, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23764752

ABSTRACT

Whereas aberrant activation of canonical Wnt/ß-catenin signaling underlies the majority of colorectal cancer cases, the contribution of non-canonical Wnt signaling is unclear. As enhanced expression of the most extensively studied non-canonical Wnt ligand WNT5A is observed in various diseases including colon cancer, WNT5A is gaining attention nowadays. Numerous in vitro studies suggest modulating capacities of WNT5A on proliferation, differentiation, migration and invasion, affecting tumor and non-mutant cells. However, a possible contribution of WNT5A to colorectal cancer remains to be elucidated. We have analyzed WNT5A expression in colorectal cancer profiling data sets, altered WNT5A expression in colon cancer cells and used our inducible Wnt5a transgenic mouse model to gain more insight into the role of WNT5A in intestinal cancer. We observed that increased WNT5A expression is associated with poor prognosis of colorectal cancer patients. WNT5A knockdown in human colon cancer cells caused reduced directional migration, deregulated focal adhesion site formation and reduced invasion, whereas Wnt5a administration promoted the directional migration of colon cancer cells. Despite these observed protumorigenic activities of WNT5A, the induction of Wnt5a expression in intestinal tumors of Apc1638N mice was not sufficient to augment malignancy or metastasis by itself. In conclusion, WNT5A promotes adhesion sites to form in a focal fashion and promotes the directional migration and invasion of colon cancer cells. Although these activities appear insufficient by themselves to augment malignancy or metastasis in Apc1638N mice, they might explain the poor colon cancer prognosis associated with enhanced WNT5A expression.


Subject(s)
Adenomatous Polyposis Coli Protein/physiology , Cell Movement , Cell Proliferation , Cell Transformation, Neoplastic/pathology , Colonic Neoplasms/pathology , Intestines/pathology , Proto-Oncogene Proteins/metabolism , Wnt Proteins/metabolism , Animals , Apoptosis , Blotting, Western , Cell Adhesion , Cell Transformation, Neoplastic/metabolism , Colonic Neoplasms/genetics , Colonic Neoplasms/metabolism , Focal Adhesions , Humans , Immunoenzyme Techniques , Intestinal Mucosa/metabolism , Mice , Mice, Knockout , Mice, Transgenic , Neoplasm Invasiveness , Proto-Oncogene Proteins/genetics , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Tumor Cells, Cultured , Wnt Proteins/genetics , Wnt-5a Protein
2.
Dev Biol ; 369(1): 91-100, 2012 Sep 01.
Article in English | MEDLINE | ID: mdl-22691362

ABSTRACT

Wnt5a is essential during embryonic development, as indicated by mouse Wnt5a knockout embryos displaying outgrowth defects of multiple structures including the gut. The dynamics of Wnt5a involvement in these processes is unclear, and perinatal lethality of Wnt5a knockout embryos has hampered investigation of Wnt5a during postnatal stages in vivo. Although in vitro studies have suggested a relevant role for Wnt5a postnatally, solid evidence for a significant impact of Wnt5a within the complexity of an adult organism is lacking. We generated a tightly-regulated inducible Wnt5a transgenic mouse model and investigated the effects of Wnt5a induction during different time-frames of embryonic development and in adult mice, focusing on the gastrointestinal tract. When induced in embryos from 10.5 dpc onwards, Wnt5a expression led to severe outgrowth defects affecting the gastrointestinal tracts, limbs, facial structures and tails, closely resembling the defects observed in Wnt5a knockout mice. However, Wnt5a induction from 13.5 dpc onwards did not cause this phenotype, indicating that the most critical period for Wnt5a in embryonic development is prior to 13.5 dpc. In adult mice, induced Wnt5a expression did not reveal abnormalities, providing the first in vivo evidence that Wnt5a has no major impact on mouse intestinal homeostasis postnatally. Protein expression of Wnt5a receptor Ror2 was strongly reduced in adult intestine compared to embryonic stages. Moreover, we uncovered a regulatory process where induction of Wnt5a causes downregulation of its receptor Ror2. Taken together, our results indicate a role for Wnt5a during a restricted time-frame of embryonic development, but suggest no impact during homeostatic postnatal stages.


Subject(s)
Aging/genetics , Embryo, Mammalian/metabolism , Embryonic Development/genetics , Intestines/embryology , Wnt Proteins/metabolism , Aging/drug effects , Animals , Cell Lineage/drug effects , Cell Lineage/genetics , Down-Regulation/drug effects , Down-Regulation/genetics , Embryo, Mammalian/cytology , Embryo, Mammalian/drug effects , Embryonic Development/drug effects , Gene Expression Regulation, Developmental/drug effects , Intestinal Mucosa/metabolism , Intestines/cytology , Intestines/drug effects , Mice , Mice, Transgenic , Models, Animal , Receptor Tyrosine Kinase-like Orphan Receptors/genetics , Receptor Tyrosine Kinase-like Orphan Receptors/metabolism , Signal Transduction/drug effects , Signal Transduction/genetics , Tetracycline/pharmacology , Wnt Proteins/genetics , Wnt-5a Protein
3.
Gut ; 60(9): 1204-12, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21307168

ABSTRACT

Objective Deregulation of the Wnt signalling pathway by mutations in the Apc or ß-catenin genes underlies colorectal carcinogenesis. As a result, ß-catenin stabilises, translocates to the nucleus, and activates gene transcription. Intestinal tumours show a heterogeneous pattern of nuclear ß-catenin, with the highest levels observed at the invasion front. Activation of receptor tyrosine kinases in these tumour areas by growth factors expressed by surrounding stromal cells phosphorylate ß-catenin at tyrosine residues, which is thought to increase ß-catenin nuclear translocation and tumour invasiveness. This study investigates the relevance of ß-catenin tyrosine phosphorylation for Wnt signalling and intestinal tumorigenesis in vivo. Design A conditional knock-in mouse model was generated into which the phospho-mimicking Y654E modification in the endogenous ß-catenin gene was introduced. Results This study provided in vivo evidence that ß-catenin(E654) is characterised by reduced affinity for cadherins, increased signalling and strongly increased phosphorylation at serine 675 by protein kinase A (PKA). In addition, homozygosity for the ß-catenin(E654) targeted allele caused embryonic lethality, whereas heterozygosity predisposed to intestinal tumour development, and strongly enhanced Apc-driven intestinal tumour initiation associated with increased nuclear accumulation of ßcatenin. Surprisingly, the expression of ß-catenin(E654) did not affect histological grade or induce tumour invasiveness. Conclusions A thus far unknown mechanism was uncovered in which Y654 phosphorylation of ß-catenin facilitates additional phosphorylation at serine 675 by PKA. In addition, in contrast to the current belief that ß-catenin Y654 phosphorylation increases tumour progression to a more invasive phenotype, these results show that it rather increases tumour initiation by enhancing Wnt signalling.


Subject(s)
Cell Transformation, Neoplastic/metabolism , Colorectal Neoplasms/metabolism , Wnt Proteins/physiology , beta Catenin/metabolism , Adenoma/genetics , Adenoma/metabolism , Animals , COS Cells , Cadherins/metabolism , Cell Membrane/metabolism , Cell Transformation, Neoplastic/genetics , Chlorocebus aethiops , Colorectal Neoplasms/genetics , Cyclic AMP-Dependent Protein Kinases/pharmacology , Embryo Loss/genetics , Gene Knock-In Techniques , Genes, APC , Genotype , Heterozygote , Homozygote , Mice , Mice, Inbred C57BL , Phosphorylation/drug effects , Phosphorylation/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...