Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Brain Inj ; 34(2): 276-280, 2020.
Article in English | MEDLINE | ID: mdl-31661639

ABSTRACT

Objective: The prevalence of chronic growth hormone deficiency (GHD) and its association with other hormonal deficiencies was determined in middle-aged patients post-stroke with and without consideration of body mass index (BMI).Methods: Clinical records were reviewed to determine pituitary function at least 3 months post-stroke. Patients with a history of endocrine anomalies were excluded. GHD was determined by utilizing standard peak GH cutoffs following the glucagon stimulation test. A secondary analysis was conducted with stricter BMI-adjusted cutoffs. The accuracy of IGF-1 in predicting GHD was also examined.Results: GHD was diagnosed in 54% of patients (≥5.0 µg/L), with 32% falling into the severe (≤3 µg/L) category. Patients with GHD had lower levels of FSH, T3, LH, and SHBG. Analyzes of BMI-adjusted GH levels, revealed that 14% of patients were GHD. These patients had higher prolactin. IGF-1 values were not predictive of GHD. Latency to be admitted to post-acute rehabilitation was greater in patients with GHD.Conclusions: Evidence suggests patients with stroke may be at risk for developing GHD. GHD was associated with decreased levels of other hormones. Co-morbidities for stroke and neuroendocrine dysfunction overlap and may have implications for recovery following stroke.


Subject(s)
Human Growth Hormone , Hypopituitarism , Stroke , Adult , Humans , Hypopituitarism/epidemiology , Hypopituitarism/etiology , Insulin-Like Growth Factor I/metabolism , Middle Aged , Pituitary Gland , Prevalence , Stroke/complications , Stroke/epidemiology
2.
J Neurotrauma ; 35(1): 17-24, 2018 01 01.
Article in English | MEDLINE | ID: mdl-28920532

ABSTRACT

The acute and chronic effects of traumatic brain injury (TBI) have been widely described; however, there is limited knowledge on how a TBI sustained during early adulthood or mid-adulthood will influence aging. Epidemiological studies have explored whether TBI poses a risk for dementia and other neurodegenerative diseases associated with aging. We will discuss the influence of TBI and resulting medical comorbidities such as endocrine, sleep, and inflammatory disturbances on age-related gray and white matter changes and cognitive decline. Post mortem studies examining amyloid, tau, and other proteins will be discussed within the context of neurodegenerative diseases and chronic traumatic encephalopathy. The data support the suggestion that pathological changes triggered by an earlier TBI will have an influence on normal aging processes and will interact with neurodegenerative disease processes rather than the development of a specific disease, such as Alzheimer's or Parkinson's. Chronic neurophysiologic change after TBI may have detrimental effects on neurodegenerative disease.


Subject(s)
Aging/pathology , Brain Injuries, Traumatic/complications , Neurodegenerative Diseases/etiology , Neurodegenerative Diseases/pathology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...