Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Exp Med ; 219(3)2022 03 07.
Article in English | MEDLINE | ID: mdl-35050301

ABSTRACT

Vascular endothelial growth factors (VEGFs) and their receptors (VEGFRs) are quintessential for the development and maintenance of blood and lymphatic vessels. However, genetic interactions between the VEGFRs are poorly understood. VEGFR2 is the dominant receptor that is required for the growth and survival of the endothelium, whereas deletion of VEGFR1 or VEGFR3 was reported to induce vasculature overgrowth. Here we show that vascular regression induced by VEGFR2 deletion in postnatal and adult mice is aggravated by additional deletion of VEGFR1 or VEGFR3 in the intestine, kidney, and pancreas, but not in the liver or kidney glomeruli. In the adult mice, hepatic and intestinal vessels regressed within a few days after gene deletion, whereas vessels in skin and retina remained stable for at least four weeks. Our results show changes in endothelial transcriptomes and organ-specific vessel maintenance mechanisms that are dependent on VEGFR signaling pathways and reveal previously unknown functions of VEGFR1 and VEGFR3 in endothelial cells.


Subject(s)
Blood Vessels/physiology , Receptors, Vascular Endothelial Growth Factor/metabolism , Vascular Endothelial Growth Factors/metabolism , Age Factors , Animals , Apoptosis , Endothelial Cells/metabolism , Endothelium/metabolism , Gene Deletion , Gene Expression Regulation , Gene Knockdown Techniques , Mice , Mice, Knockout , Microvascular Density/genetics , Multigene Family , Neovascularization, Physiologic/genetics , Organ Specificity/genetics , Phenotype , Protein Binding , Receptors, Vascular Endothelial Growth Factor/genetics , Signal Transduction , Vascular Endothelial Growth Factors/genetics
2.
Arterioscler Thromb Vasc Biol ; 40(7): 1722-1737, 2020 07.
Article in English | MEDLINE | ID: mdl-32404007

ABSTRACT

OBJECTIVE: Lymphatics play an essential pathophysiological role in promoting fluid and immune cell tissue clearance. Conversely, immune cells may influence lymphatic function and remodeling. Recently, cardiac lymphangiogenesis has been proposed as a therapeutic target to prevent heart failure after myocardial infarction (MI). We investigated the effects of gene therapy to modulate cardiac lymphangiogenesis post-MI in rodents. Second, we determined the impact of cardiac-infiltrating T cells on lymphatic remodeling in the heart. Approach and Results: Comparing adenoviral versus adeno-associated viral gene delivery in mice, we found that only sustained VEGF (vascular endothelial growth factor)-CC156S therapy, achieved by adeno-associated viral vectors, increased cardiac lymphangiogenesis, and led to reduced cardiac inflammation and dysfunction by 3 weeks post-MI. Conversely, inhibition of VEGF-C/-D signaling, through adeno-associated viral delivery of soluble VEGFR3 (vascular endothelial growth factor receptor 3), limited infarct lymphangiogenesis. Unexpectedly, this treatment improved cardiac function post-MI in both mice and rats, linked to reduced infarct thinning due to acute suppression of T-cell infiltration. Finally, using pharmacological, genetic, and antibody-mediated prevention of cardiac T-cell recruitment in mice, we discovered that both CD4+ and CD8+ T cells potently suppress, in part through interferon-γ, cardiac lymphangiogenesis post-MI. CONCLUSIONS: We show that resolution of cardiac inflammation after MI may be accelerated by therapeutic lymphangiogenesis based on adeno-associated viral gene delivery of VEGF-CC156S. Conversely, our work uncovers a major negative role of cardiac-recruited T cells on lymphatic remodeling. Our results give new insight into the interconnection between immune cells and lymphatics in orchestration of cardiac repair after injury.


Subject(s)
CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/metabolism , Genetic Therapy , Lymphangiogenesis , Lymphatic Vessels/metabolism , Myocardial Infarction/therapy , Myocardium/metabolism , Vascular Endothelial Growth Factor C/metabolism , Vascular Endothelial Growth Factor Receptor-3/metabolism , Animals , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Dependovirus/genetics , Disease Models, Animal , Female , Genetic Vectors , Interferon-gamma/metabolism , Lymphatic Vessels/immunology , Lymphatic Vessels/physiopathology , Male , Mice, Inbred C57BL , Myocardial Infarction/genetics , Myocardial Infarction/immunology , Myocardial Infarction/metabolism , Myocardium/immunology , Myocardium/pathology , Rats, Wistar , Recovery of Function , Signal Transduction , Time Factors , Vascular Endothelial Growth Factor C/genetics , Vascular Endothelial Growth Factor Receptor-3/genetics , Ventricular Function, Left
SELECTION OF CITATIONS
SEARCH DETAIL
...