Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ChemSusChem ; 4(11): 1662-70, 2011 Nov 18.
Article in English | MEDLINE | ID: mdl-22083870

ABSTRACT

The surface areas and uptake of CO(2) and CH(4) by four graphene samples are measured and compared with activated charcoal. The surface areas are in the range of 5-640 m(2) g(-1), whereas the CO(2) and CH(4) uptake values are in the range of 18-45 wt % (at 195 K, 0.1 MPa) and 0-2.8 wt % (at 273 K, 5 MPa), respectively. The CO(2) and CH(4) uptake values of the graphene samples vary linearly with the surface area. In contrast, graphene-like B(x)C(y)N(z) samples with compositions close to BC(2)N exhibit surface areas in the range of 1500-1990 m(2) g(-1) and CO(2) and CH(4) uptake values in the ranges 97-128 wt % (at 195 K, 0.1 MPa) and 7.5-17.3 wt %, respectively. The uptake of these gases varies exponentially with the surface area of the B(x)C(y)Z(n) samples, and the uptake of CH(4) varies proportionally with that of CO(2). The uptake of CO(2) for the best BC(2)N sample is 64 wt % at 298 K. The large uptake of both CO(2) and CH(4) gases by BC(2)N betters the performance of graphenes and activated charcoal. First-principles calculations show that the adsorption of CO(2) and CH(4) is more favored on BCN samples compared to graphene.


Subject(s)
Boron Compounds/chemistry , Carbon Dioxide/chemistry , Graphite/chemistry , Methane/chemistry , Adsorption , Carbon Dioxide/isolation & purification , Greenhouse Effect , Methane/isolation & purification , Models, Molecular , Molecular Conformation , Temperature
2.
ACS Nano ; 4(3): 1539-44, 2010 Mar 23.
Article in English | MEDLINE | ID: mdl-20128601

ABSTRACT

Enthused by the fascinating properties of graphene, we have prepared graphene analogues of BN by a chemical method with a control on the number of layers. The method involves the reaction of boric acid with urea, wherein the relative proportions of the two have been varied over a wide range. Synthesis with a high proportion of urea yields a product with a majority of 1-4 layers. The surface area of BN increases progressively with the decreasing number of layers, and the high surface area BN exhibits high CO(2) adsorption, but negligible H(2) adsorption. Few-layer BN has been solubilized by interaction with Lewis bases. We have used first-principles simulations to determine structure, phonon dispersion, and elastic properties of BN with planar honeycomb lattice-based n-layer forms. We find that the mechanical stability of BN with respect to out-of-plane deformation is quite different from that of graphene, as evident in the dispersion of their flexural modes. BN is softer than graphene and exhibits signatures of long-range ionic interactions in its optical phonons. Finally, structures with different stacking sequences of BN have comparable energies, suggesting relative abundance of slip faults, stacking faults, and structural inhomogeneities in multilayer BN.

SELECTION OF CITATIONS
SEARCH DETAIL
...