Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Biol Rep ; 51(1): 543, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38642191

ABSTRACT

Heavy metal stress is a major problem in present scenario and the consequences are well known. The agroecosystems are heavily affected by the heavy metal stress and the question arises on the sustainability of the agricultural products. Heavy metals inhibit the process to influence the reactive oxygen species production. When abundantly present copper metal ion has toxic effects which is mitigated by the exogenous application of Si. The role of silicon is to enhance physical parameters as well as gas exchange parameters. Si is likely to increase antioxidant enzymes in response to copper stress which can relocate toxic metals at subcellular level and remove heavy metals from the cell. Silicon regulates phytohormones when excess copper is present. Rate of photosynthesis and mineral absorption is increased in response to metal stress. Silicon manages enzymatic and non-enzymatic activities to balance metal stress condition. Cu transport by the plasma membrane is controlled by a family of proteins called copper transporter present at cell surface. Plants maintain balance in absorption, use and storage for proper copper ion homeostasis. Copper chaperones play vital role in copper ion movement within cells. Prior to that metallochaperones control Cu levels. The genes responsible in copper stress mitigation are discovered in various plant species and their function are decoded. However, detailed molecular mechanism is yet to be studied. This review discusses about the crucial mechanisms of Si-mediated alleviation of copper stress, the role of copper binding proteins in copper homeostasis. Moreover, it also provides a brief information on the genes, their function and regulation of their expression in relevance to Cu abundance in different plant species which will be beneficial for further understanding of the role of silicon in stabilization of copper stress.


Subject(s)
Copper , Metals, Heavy , Copper/metabolism , Silicon/pharmacology , Silicon/metabolism , Metals, Heavy/metabolism , Antioxidants/metabolism , Plants/metabolism , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Dietary Supplements
2.
J Microbiol Methods ; 211: 106790, 2023 08.
Article in English | MEDLINE | ID: mdl-37487886

ABSTRACT

Green nanotechnology provides efficient solutions for converting biological systems to green approaches through nanomaterial synthesis and thus preventing any associated toxicity. Green nanoparticle (NP) synthesis involves the use of biological sources for synthesis of metallic NPs for pharmaceutical and biomedical applications in an eco-friendly and comparatively economical manner. Nanotechnology is a promising technology with a wide range of pharmaceutical applications in the modern world because it provides a higher surface area (SA) to volume (Vol) ratio. Compared to chemically synthesized NPs, algal-based NPs have recently received increasing attention from researchers worldwide as potential agents to treat and inhibit infections caused by microbial pathogens resistant to antibiotics. Algae produce various bioactive compounds such as chlorophyll, phycobilins, phenolics, flavonoids, glucosides, tannins, and saponins that can be used as therapeutic agents. Metallic NPs exert greater toxic effects on their targets than their macroscopic counterparts. Both macroalgae and some microalgae are used to synthesize metallic NPs that exhibit antimicrobial activity. The synthesis of algal-based NPs may provide potential drug candidates for use in nanomedicine against microbial diseases. To date, many studies have been conducted on algal-based NPs and their potential antimicrobial and antifungal activities. Therefore, in this review we have focused on the green synthesis of different NPs using algae and their therapeutic potential with reference to their antimicrobial activity.


Subject(s)
Anti-Infective Agents , Metal Nanoparticles , Nanoparticles , Metal Nanoparticles/chemistry , Anti-Bacterial Agents/chemistry , Anti-Infective Agents/pharmacology , Nanotechnology , Plants , Pharmaceutical Preparations
3.
Bull Natl Res Cent ; 45(1): 123, 2021.
Article in English | MEDLINE | ID: mdl-34257504

ABSTRACT

BACKGROUND: Coronavirus disease 19 is a viral infection caused by a novel coronavirus, SARS-CoV-2. It was first notified in Wuhan, China, is now spread into numerous part of the world. Thus, the world needs urgent support and encouragement to develop a vaccine or antiviral treatments to combat the atrocious outbreak. MAIN BODY OF THE ABSTRACT: The origin of this virus is yet unknown; however, rapid transmission from human-to-human "Anthroponosis" has widely confirmed. The world is witnessing a continuous hike in SARS-CoV-2 infection. In light of the outbreak of coronavirus disease 19, we have aimed to highlight the basic and vital information about the novel coronavirus. We provide an overview of SARS-CoV-2 transmission, timeline and its pathophysiological properties which would be an aid for the development of therapeutic molecules and antiviral drugs. Immune system plays a crucial role in virus infection in order to control but may have dark side when becomes uncontrollable. The host and SARS-CoV-2 interaction describe how the virus exploits host machinery and how overactive host immune response can cause disease severity also addressed in this review. SHORT CONCLUSION: Safe and effective vaccines may be the game-changing tools, but in the near future wearing mask, washing hands at regular intervals, avoiding crowed, maintaining physical distancing and hygienic surrounding, must be good practices to reduce and break the transmission chain. Still, research is ongoing not only on how vaccines protect against disease, but also against infection and transmission.

SELECTION OF CITATIONS
SEARCH DETAIL
...