Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Language
Publication year range
1.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-737106

ABSTRACT

Twenty cDNA differential fragments were isolated from the hippocampus of rats in epileptic state using mRNA differential display technique. Four fragments were sequenced and compared with the known sequences in the Genebank, which showed that ERG8, ERG11, ERG12had no significant identity to any known sequences; ERG14 had 64%-69% identity to microtubulin-associated protein of the rat. Because the differential expression of these genes was caused by epilepsy inducer coriaria lactone (CL) and anti-epilepsy drug MK-801 and ERG8 might be a novel candidate epilepsy gene; ERG11 and ERG12 might be novel candidate anti-epilepsy genes.Since the microtubulin-associated protein is closely associated with the collateral sprouting of mossy fibers in the hippocampus of seizured rat, the high expression of ERG14 in the early stage of epilepsy might predict the growth of axon and formation of synapse.

2.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-735638

ABSTRACT

Twenty cDNA differential fragments were isolated from the hippocampus of rats in epileptic state using mRNA differential display technique. Four fragments were sequenced and compared with the known sequences in the Genebank, which showed that ERG8, ERG11, ERG12had no significant identity to any known sequences; ERG14 had 64%-69% identity to microtubulin-associated protein of the rat. Because the differential expression of these genes was caused by epilepsy inducer coriaria lactone (CL) and anti-epilepsy drug MK-801 and ERG8 might be a novel candidate epilepsy gene; ERG11 and ERG12 might be novel candidate anti-epilepsy genes.Since the microtubulin-associated protein is closely associated with the collateral sprouting of mossy fibers in the hippocampus of seizured rat, the high expression of ERG14 in the early stage of epilepsy might predict the growth of axon and formation of synapse.

SELECTION OF CITATIONS
SEARCH DETAIL
...