Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Biol Psychol ; 183: 108658, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37567549

ABSTRACT

Resilience is an important personal characteristic that influences health and recovery. Previous studies of chronic pain suggest that highly resilient people may be more effective at modulating their pain. Since brain gray matter in the antinociceptive pathway has also been shown to be abnormal in people with chronic pain, we examined whether resilience is related to gray matter in regions of interest (ROIs) of the antinociceptive pathway (rostral and subgenual anterior cingulate cortex (rACC, sgACC), anterior insula (aINS), dorsolateral prefrontal cortex (dlPFC)) normally and in people who are experiencing chronic pain. We extracted gray matter volume (GMV) and cortical thickness (CT) from 3T MRIs of 88 people with chronic pain (half males/females) and 86 healthy controls (HCs), who completed The Resilience Scale and Brief Pain Inventory. We found that resilience scores were significantly lower in people with chronic pain compared to HCs, whereas ROI GMV and CT were not different between groups. Resilience negatively correlated with average pain scores and positively correlated with GMV in the bilateral rACC, sgACC, and left dlPFC of people with chronic pain. Mediation analyses revealed that GMV in the right rACC and left sgACC partially co-mediated the relationship between resilience and average pain in people with chronic pain. The resilience-pain and some resilience-GMV relationships were sex-dependent. These findings suggest that the antinociceptive pathway may play a role in the impact of resilience on one's ability to modulate chronic pain. A better understanding of the brain-resilience relationship may help advance evidence-based approaches to pain management.

2.
Front Pain Res (Lausanne) ; 4: 1057659, 2023.
Article in English | MEDLINE | ID: mdl-36874441

ABSTRACT

Two behavioural phenotypes in healthy people have been delineated based on their intrinsic attention to pain (IAP) and whether their reaction times (RT) during a cognitively-demanding task are slower (P-type) or faster (A-type) during experimental pain. These behavioural phenotypes were not previously studied in chronic pain populations to avoid using experimental pain in a chronic pain context. Since pain rumination (PR) may serve as a supplement to IAP without needing noxious stimuli, we attempted to delineate A-P/IAP behavioural phenotypes in people with chronic pain and determined if PR can supplement IAP. Behavioural data acquired in 43 healthy controls (HCs) and 43 age-/sex-matched people with chronic pain associated with ankylosing spondylitis (AS) was retrospectively analyzed. A-P behavioural phenotypes were based on RT differences between pain and no-pain trials of a numeric interference task. IAP was quantified based on scores representing reported attention towards or mind-wandering away from experimental pain. PR was quantified using the pain catastrophizing scale, rumination subscale. The variability in RT was higher during no-pain trials in the AS group than HCs but was not significantly different in pain trials. There were no group differences in task RTs in no-pain and pain trials, IAP or PR scores. IAP and PR scores were marginally significantly positively correlated in the AS group. RT differences and variability were not significantly correlated with IAP or PR scores. Thus, we propose that experimental pain in the A-P/IAP protocols can confound testing in chronic pain populations, but that PR could be a supplement to IAP to quantify attention to pain.

3.
Brain Commun ; 4(5): fcac237, 2022.
Article in English | MEDLINE | ID: mdl-36246046

ABSTRACT

Carpal tunnel syndrome is the most common entrapment neuropathy and is associated with altered brain function and structure. However, little is understood of the central mechanisms associated with its pain, symptom presentation, and treatment-related resolution. This longitudinal study evaluated carpal tunnel syndrome-related alterations in brain network communication and relationships to behavioural signs of central sensitization before and after carpal tunnel release surgery. We tested the hypothesis that carpal tunnel syndrome is associated with condition- and treatment-related plasticity in brain regions involved in somatosensation. We used quantitative sensory testing and clinical and pain questionnaires to assess sensory and pain function in 25 patients with carpal tunnel syndrome before (18 women, 7 men) and after (n = 16) surgery, and 25 sex- and age-matched healthy controls. We also acquired resting-state functional MRI to determine functional connectivity of two key nodes in the somatosensory system, the thalamus and primary somatosensory cortex. Seed-to-whole brain resting-state static functional connectivity analyses revealed abnormally low functional connectivity for the hand area of the primary somatosensory cortex with the contralateral somatosensory association cortex (supramarginal gyrus) before surgery (P < 0.01). After clinically effective surgery: (i) Primary somatosensory functional connectivity was normalized with the contralateral somatosensory association cortex and reduced with the dorsolateral prefrontal cortex (a region associated with cognitive and emotional modulation of pain) and primary visual areas (P < 0.001) from pre-op levels; and (ii) Functional connectivity of the thalamus with the primary somatosensory and motor cortices was attenuated from pre-op levels (P < 0.001) but did not correlate with temporal summation of pain (a behavioural measure of central sensitization) or clinical measures. This study is the first to reveal treatment-related neuroplasticity in resting-state functional connectivity of the somatosensory system in carpal tunnel syndrome. The findings of dysfunctional resting-state functional connectivity point to aberrant neural synchrony between the brain's representation of the hand with regions involved in processing and integrating tactile and nociceptive stimuli and proprioception in carpal tunnel syndrome. Aberrant neural communication between the primary somatosensory hand area and the dorsolateral prefrontal cortex could reflect increased attention to pain, paraesthesia, and altered sensation in the hand. Finally, reduced thalamocortical functional connectivity after surgery may reflect central plasticity in response to the resolution of abnormal sensory signals from the periphery. Our findings support the concept of underlying brain contributions to this peripheral neuropathy, specifically aberrant thalamocortical and corticocortical communication, and point to potential central therapeutic targets to complement peripheral treatments.

4.
Commun Biol ; 5(1): 1000, 2022 09 21.
Article in English | MEDLINE | ID: mdl-36131088

ABSTRACT

Neuronal populations in the brain are engaged in a temporally coordinated manner at rest. Here we show that spontaneous transitions between large-scale resting-state networks are altered in chronic neuropathic pain. We applied an approach based on the Hidden Markov Model to magnetoencephalography data to describe how the brain moves from one activity state to another. This identified 12 fast transient (~80 ms) brain states including the sensorimotor, ascending nociceptive pathway, salience, visual, and default mode networks. Compared to healthy controls, we found that people with neuropathic pain exhibited abnormal alpha power in the right ascending nociceptive pathway state, but higher power and coherence in the sensorimotor network state in the beta band, and shorter time intervals between visits of the sensorimotor network, indicating more active time in this state. Conversely, the neuropathic pain group showed lower coherence and spent less time in the frontal attentional state. Therefore, this study reveals a temporal imbalance and dysregulation of spectral frequency-specific brain microstates in patients with neuropathic pain. These findings can potentially impact the development of a mechanism-based therapeutic approach by identifying brain targets to stimulate using neuromodulation to modify abnormal activity and to restore effective neuronal synchrony between brain states.


Subject(s)
Magnetoencephalography , Neuralgia , Brain/diagnostic imaging , Brain/physiology , Brain Mapping , Humans , Magnetic Resonance Imaging
5.
Pain ; 163(7): 1291-1302, 2022 07 01.
Article in English | MEDLINE | ID: mdl-34711764

ABSTRACT

ABSTRACT: Alpha oscillatory activity (8-13 Hz) is the dominant rhythm in the awake brain and is known to play an important role in pain states. Previous studies have identified alpha band slowing and increased power in the dynamic pain connectome (DPC) of people with chronic neuropathic pain. However, a link between alpha-band abnormalities and sex differences in brain organization in healthy individuals and those with chronic pain is not known. Here, we used resting-state magnetoencephalography to test the hypothesis that peak alpha frequency (PAF) abnormalities are general features across chronic central and peripheral conditions causing neuropathic pain but exhibit sex-specific differences in networks of the DPC (ascending nociceptive pathway [ANP], default mode network, salience network [SN], and subgenual anterior cingulate cortex). We found that neuropathic pain (N = 25 men and 25 women) was associated with increased PAF power in the DPC compared with 50 age- and sex-matched healthy controls, whereas slower PAF in nodes of the SN (temporoparietal junction) and the ANP (posterior insula) was associated with higher trait pain intensity. In the neuropathic pain group, women exhibited lower PAF power in the subgenual anterior cingulate cortex and faster PAF in the ANP and SN than men. The within-sex analyses indicated that women had neuropathic pain-related increased PAF power in the ANP, SN, and default mode network, whereas men with neuropathic pain had increased PAF power restricted to the ANP. These findings highlight neuropathic pain-related and sex-specific abnormalities in alpha oscillations across the DPC that could underlie aberrant neuronal communication in nociceptive processing and modulation.


Subject(s)
Neuralgia , Sex Characteristics , Female , Humans , Male , Alpha Rhythm , Brain/metabolism , Magnetic Resonance Imaging , Neuralgia/diagnostic imaging , Pharmaceutical Preparations
6.
Hum Brain Mapp ; 42(3): 598-614, 2021 02 15.
Article in English | MEDLINE | ID: mdl-33068500

ABSTRACT

Neural dynamics can shape human experience, including pain. Pain has been linked to dynamic functional connectivity within and across brain regions of the dynamic pain connectome (consisting of the ascending nociceptive pathway (Asc), descending antinociceptive pathway (Desc), salience network (SN), and the default mode network (DMN)), and also shows sex differences. These linkages are based on fMRI-derived slow hemodynamics. Here, we utilized the fine temporal resolution of magnetoencephalography (MEG) to measure resting state functional coupling (FCp) related to individual pain perception and pain interference in 50 healthy individuals (26 women, 24 men). We found that pain sensitivity and pain interference were linked to within- and cross-network broadband FCp across the Asc and SN. We also identified sex differences in these relationships: (a) women exhibited greater within-network static FCp, whereas men had greater dynamic FCp within the dynamic pain connectome; (b) relationship between pain sensitivity and pain interference with FCp in women was commonly found in theta, whereas in men, these relationships were predominantly in the beta and low gamma bands. These findings indicate that dynamic interactions of brain networks underlying pain involve fast brain communication in men but slower communication in women.


Subject(s)
Cerebral Cortex/physiology , Connectome , Default Mode Network/physiology , Magnetoencephalography , Nerve Net/physiology , Pain Perception/physiology , Pain Threshold/physiology , Adolescent , Adult , Cerebral Cortex/diagnostic imaging , Default Mode Network/diagnostic imaging , Electric Stimulation , Female , Humans , Male , Nerve Net/diagnostic imaging , Sex Characteristics , Young Adult
7.
Front Pain Res (Lausanne) ; 2: 673538, 2021.
Article in English | MEDLINE | ID: mdl-35295450

ABSTRACT

The subgenual anterior cingulate cortex (sgACC) is a key node of the descending antinociceptive system with sex differences in its functional connectivity (FC). We previously reported that, in a male-prevalent chronic pain condition, sgACC FC is abnormal in women but not in men. This raises the possibility that, within a sex, sgACC FC may be either protective or represent a vulnerability to develop a sex-dominant chronic pain condition. The aim of this study was to characterize sgACC FC in a female-dominant chronic pain condition, carpal tunnel syndrome (CTS), to investigate whether sgACC abnormalities are a common feature in women with chronic pain or unique to individuals with pain conditions that are more prevalent in the opposite sex. We used fMRI to determine the resting state FC of the sgACC in healthy controls (HCs, n = 25, 18 women; 7 men) and people with CTS before (n = 25, 18 women; 7 men) and after (n = 17, 13 women; 4 men) successful surgical treatment. We found reduced sgACC FC with the medial pre-frontal cortex (mPFC) and temporal lobe in CTS compared with HCs. The group-level sgACC-mPFC FC abnormality was driven by men with CTS, while women with CTS did not have sgACC FC abnormalities compared with healthy women. We also found that age and sex influenced sgACC FC in both CTS and HCs, with women showing greater FC with bilateral frontal poles and men showing greater FC with the parietal operculum. After surgery, there was reduced sgACC FC with the orbitofrontal cortex, striatum, and premotor areas and increased FC with the posterior insula and precuneus compared with pre-op scans. Abnormally reduced sgACC-mPFC FC in men but not women with a female-prevalent chronic pain condition suggests pain-related sgACC abnormalities may not be specific to women but rather to individuals who develop chronic pain conditions that are more dominant in the opposite sex. Our data suggest the sgACC plays a role in chronic pain in a sex-specific manner, and its communication with other regions of the dynamic pain connectome undergoes plasticity following pain-relieving treatment, supporting it as a potential therapeutic target for neuromodulation in chronic pain.

8.
Pain ; 162(4): 1188-1200, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33044396

ABSTRACT

ABSTRACT: Men and women can exhibit different pain sensitivities, and many chronic pain conditions are more prevalent in one sex. Although there is evidence of sex differences in the brain, it is not known whether there are sex differences in the organization of large-scale functional brain networks in chronic pain. Here, we used graph theory with modular analysis and machine-learning of resting-state-functional magnetic resonance imaging data from 220 participants: 155 healthy controls and 65 individuals with chronic low back pain due to ankylosing spondylitis, a form of arthritis. We found an extensive overlap in the graph partitions with the major brain intrinsic systems (ie, default mode, central, visual, and sensorimotor modules), but also sex-specific network topological characteristics in healthy people and those with chronic pain. People with chronic pain exhibited higher cross-network connectivity, and sex-specific nodal graph properties changes (ie, hub disruption), some of which were associated with the severity of the chronic pain condition. Females exhibited atypically higher functional segregation in the mid cingulate cortex and subgenual anterior cingulate cortex and lower connectivity in the network with the default mode and frontoparietal modules, whereas males exhibited stronger connectivity with the sensorimotor module. Classification models on nodal graph metrics could classify an individual's sex and whether they have chronic pain with high accuracies (77%-92%). These findings highlight the organizational abnormalities of resting-state-brain networks in people with chronic pain and provide a framework to consider sex-specific pain therapeutics.


Subject(s)
Chronic Pain , Sex Characteristics , Brain/diagnostic imaging , Brain Mapping , Chronic Pain/diagnostic imaging , Female , Humans , Magnetic Resonance Imaging , Male , Nerve Net/diagnostic imaging , Neural Pathways/diagnostic imaging
9.
Pain ; 162(1): 97-108, 2021 01.
Article in English | MEDLINE | ID: mdl-32773597

ABSTRACT

The subgenual anterior cingulate cortex (sgACC) plays an important role in pain modulation. We previously demonstrated sex differences in sgACC functional connectivity (FC) in healthy individuals. Given that many chronic pain conditions show sex differences in prevalence, here we tested the hypothesis that people with chronic pain exhibit a sex-specific pattern of abnormal sgACC FC. We acquired resting-state functional magnetic resonance imaging data from 156 (82 W: 74 M) healthy participants and 38 (19 W: 19 M) people with chronic low back pain resulting from ankylosing spondylitis, a condition that predominantly affects men. We confirmed that there are sex differences in sgACC FC in our large cohort of healthy adults; women had greater sgACC FC with the precuneus, a key node of the default mode network, and men had greater sgACC FC with the posterior insula and the operculum. Next, we identified an interaction effect between sex and pain status (healthy/chronic pain) for sgACC FC. Within the chronic pain group, women had greater sgACC FC than men to the default mode and sensorimotor networks. Compared to healthy women, women with chronic pain also had greater sgACC FC to the precuneus and lower FC to the hippocampus and frontal regions. No differences in sgACC FC were seen in men with vs without chronic pain. Our findings indicate that abnormal sgACC circuitry is unique to women but not men with ankylosing spondylitis-related chronic pain. These sex differences may impact the benefit of therapeutics that target the sgACC for chronic pain.


Subject(s)
Chronic Pain , Spondylitis, Ankylosing , Adult , Brain Mapping , Chronic Pain/diagnostic imaging , Female , Gyrus Cinguli/diagnostic imaging , Humans , Magnetic Resonance Imaging , Male , Neural Pathways/diagnostic imaging , Sex Characteristics
10.
Pain ; 161(8): 1847-1860, 2020 08.
Article in English | MEDLINE | ID: mdl-32701844

ABSTRACT

Distinct pain experiences are shaped both by personal attributes and characteristics of noxious stimuli. An Individual's capacity for endogenous pain inhibition (reflected by conditioned pain modulation [CPM]), their resilience, and the pain unpleasantness and salience of painful stimuli can impact their pain perception. Here, we aimed to determine how individual variability in CPM relates to sex and resilience as personal attributes, and pain unpleasantness and salience of the CPM conditioning stimulus (CS). We evaluated CPM in 106 healthy participants (51 female and 55 male) based on the change in test stimulus pain applied concurrently with a painful CS, both delivered by painful heat. The CS reduced test stimulus pain in only half of the participants (CPM subgroup), but did not do so for the other half (no-CPM subgroup), many who exhibited pain facilitation. A regression model explained CPM effects after accounting for sex, resilience, CS pain unpleasantness and salience. In the CPM subgroup regression model, the CPM effect was positively related to CS pain unpleasantness, while the CPM effect was not related to any variable in the no-CPM subgroup model. Correlation analyses revealed that the CPM effect was anticorrelated with resilience in males with no-CPM. The CPM effect was correlated with CS pain unpleasantness in males with CPM and in females with no-CPM. The CPM effect and CS salience were correlated in the whole group more strongly than in the subgroups. These data reveal that the complexity of contributors to CPM variability include both personal attributes and attributes of the CS.


Subject(s)
Pain Threshold , Sex Characteristics , Conditioning, Psychological , Female , Humans , Male , Pain , Pain Measurement
11.
Neuroimage Clin ; 26: 102230, 2020.
Article in English | MEDLINE | ID: mdl-32143136

ABSTRACT

Sensory perceptions are coded by complex neural dynamics of regional communication in the brain. Thus, sensory abnormalities such as chronic pain may occur when neural dynamics go awry. Previous studies of cross-network dynamic functional connectivity in chronic pain identified abnormalities but were based on functional MRI which only captures slow temporal features. Here we conducted a magnetoencephalography (MEG) study to investigate fine temporal dynamics of aberrant cross-regional and cross-network communication of the dynamic pain connectome in patients with chronic pain. We also introduced a novel measure, dynamic functional coupling, to quantify the variability of brain communication. The study was performed in 33 people who had chronic pain associated with multiple sclerosis and 30 healthy controls. We found that patients with chronic pain exhibited abnormalities in cross-network functional coupling across multiple frequency bands (theta, alpha, beta, gamma), between the salience network and 3 other networks: the ascending nociceptive pathway, descending anti-nociceptive pathway, and the default mode network. However, these cross-network abnormalities involved different frequency bands in patients with neuropathic versus non-neuropathic chronic pain. Furthermore, cross-network abnormalities were linked to pain severity and pain interference. Our findings implicate broadband cross-network abnormalities as hallmark features of chronic pain in multiple sclerosis.


Subject(s)
Brain/physiopathology , Multiple Sclerosis/complications , Multiple Sclerosis/physiopathology , Neuralgia/etiology , Neuralgia/physiopathology , Adult , Chronic Pain/etiology , Chronic Pain/physiopathology , Connectome , Female , Humans , Magnetoencephalography , Male , Nerve Net/physiopathology
12.
Neuroimage Clin ; 26: 102241, 2020.
Article in English | MEDLINE | ID: mdl-32203904

ABSTRACT

We previously identified alpha frequency slowing and beta attenuation in the dynamic pain connectome related to pain severity and interference in patients with multiple sclerosis-related neuropathic pain (NP). Here, we determined whether these abnormalities, are markers of aberrant temporal dynamics in non-neuropathic inflammatory pain (non-NP) or when NP is also suspected. We measured resting-state magnetoencephalography (MEG) spectral density in 45 people (17 females, 28 males) with chronic back pain due to ankylosing spondylitis (AS) and 38 age/sex matched healthy controls. We used painDETECT scores to divide the chronic pain group into those with only non-NP (NNP) and those who likely also had a component of NP in addition to their inflammatory pain. We also assessed pain severity, pain interference, and disease activity with the Brief Pain Inventory and Bath AS Disease Activity Index (BASDAI). We examined spectral power in the dynamic pain connectome, including nodes of the ascending nociceptive pathway (ANP), default mode (DMN), and salience networks (SN). Compared to the healthy controls, the AS patients exhibited increased theta power in the DMN and decreased low-gamma power in the DMN and ANP, but did not exhibit beta-band attenuation or peak-alpha slowing. The NNP patients were not different from HCs. Compared to both healthy controls and NNP, NP patients had increased alpha power in the ANP. Increased alpha power within the ANP was associated with reduced BASDAI in the NNP group, and increased pain in the mixed-NP group within the DMN, SN, and ANP. Thus, high theta and low gamma activity may be markers of chronic pain but high alpha-band activity may relate to particular features of neuropathic chronic pain.


Subject(s)
Alpha Rhythm/physiology , Brain/physiopathology , Chronic Pain/physiopathology , Connectome , Neuralgia/physiopathology , Adult , Back Pain/etiology , Back Pain/physiopathology , Chronic Pain/etiology , Female , Humans , Male , Neuralgia/etiology , Spondylitis, Ankylosing/complications
13.
Pain ; 160(7): 1670-1679, 2019 07.
Article in English | MEDLINE | ID: mdl-30839433

ABSTRACT

Therapeutic interventions for neuropathic pain, such as the N-methyl-D-aspartate (NMDA) antagonist ketamine, can vary widely in effectiveness. In this study, we conducted a longitudinal functional MRI study to test the hypothesis that the pain-relieving effect of ketamine is the result of reversal of abnormalities in regional low-frequency brain oscillations (LFOs) and abnormal cross-network functional connectivity (FC) of the dynamic pain connectome. We found that (1) ketamine decreased regional LFOs in the posterior cingulate cortex of the default mode network, (2) a machine-learning algorithm demonstrated that treatment-induced brain changes could be used to make generalizable inferences about pain relief, (3) treatment responders exhibited a significant decrease in cross-network static FC between the posterior cingulate cortex and regions of the sensorimotor and salience networks following treatment, (4) the degree of reduced cross-network FC correlated with the amount of pain relief, and (5) ketamine treatment did not produce significant differences in static or dynamic FC within the ascending nociceptive or descending antinociceptive pathway. These findings support the proposition that regional LFOs contribute to cross-network connectivity that underlie the effectiveness of ketamine to produce significant relief from neuropathic pain. Together with our recent findings that pretreatment dynamic FC of the descending antinociceptive pathway can predict ketamine treatment outcomes, these new findings indicate that pain relief from ketamine arises from a combination of flexible pretreatment FC of the descending antinocieptive pathway together with plasticity (reduction) of cross-network connectivity of the default mode network with sensorimotor and salience networks.


Subject(s)
Anesthetics, Dissociative/therapeutic use , Connectome , Ketamine/therapeutic use , Neuralgia/drug therapy , Neuronal Plasticity , Pain/physiopathology , Adult , Aged , Algorithms , Female , Gyrus Cinguli/diagnostic imaging , Gyrus Cinguli/physiopathology , Humans , Machine Learning , Magnetic Resonance Imaging , Male , Middle Aged , Nerve Net/diagnostic imaging , Nerve Net/physiopathology , Neuralgia/diagnostic imaging , Neuroimaging , Pain Management , Pain Measurement , Young Adult
14.
Pain ; 160(1): 187-197, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30188456

ABSTRACT

Chronic pain is a common occurrence in multiple sclerosis (MS) that severely affects quality of life, but the underlying brain mechanisms related to these symptoms are unknown. Previous electroencephalography studies have demonstrated a role of alpha-band and beta-band power in pain processing. However, how and where these brain signals change in MS-related chronic pain is unknown. Here, we used resting state magnetoencephalography to examine regional spectral power in the dynamic pain connectome-including areas of the ascending nociceptive pathway, default mode network (DMN), and the salience network (SN)-in patients with chronic MS pain and in healthy controls. Each patient was assessed for pain, neuropathic pain (NP), and pain interference with activities of daily living. We found that patients with MS exhibited an increase of alpha-band power and a decrease of beta-band power, most prominently in the thalamus and the posterior insula of the ascending nociceptive pathway and in the right temporoparietal junction of the SN. In addition, patients with mixed-NP exhibited slowing of alpha peak power within the thalamus and the posterior insula, and in the posterior cingulate cortex of the DMN. Finally, pain interference scores in patients with mixed-NP were strongly correlated with alpha and beta peak power in the thalamus and posterior insula. These novel findings reveal brain mechanisms of MS-related pain in the ascending nociceptive pathway, SN, and DMN, and that these spectral abnormalities reflect the impact of pain on quality of life measures.


Subject(s)
Chronic Pain/etiology , Chronic Pain/therapy , Magnetoencephalography , Models, Neurological , Multiple Sclerosis/complications , Activities of Daily Living , Adult , Alpha Rhythm/physiology , Beta Rhythm/physiology , Connectome , Humans , Magnetic Resonance Imaging , Middle Aged , Multiple Sclerosis/diagnostic imaging , Spectrum Analysis , Surveys and Questionnaires
15.
Anesthesiology ; 129(5): 1015-1024, 2018 11.
Article in English | MEDLINE | ID: mdl-30199420

ABSTRACT

WHAT WE ALREADY KNOW ABOUT THIS TOPIC: WHAT THIS ARTICLE TELLS US THAT IS NEW: BACKGROUND:: Ketamine is an N-methyl-D-aspartate receptor antagonist that reduces temporal summation of pain and modulates antinociception. Ketamine infusions can produce significant relief of neuropathic pain, but the treatment is resource intensive and can be associated with adverse effects. Thus, it is crucial to select patients who might benefit from this treatment. The authors tested the hypothesis that patients with enhanced temporal summation of pain and the capacity to modulate pain via the descending antinociceptive brain pathway are predisposed to obtain pain relief from ketamine. METHODS: Patients with refractory neuropathic pain (n = 30) and healthy controls underwent quantitative sensory testing and resting-state functional magnetic resonance imaging and then completed validated questionnaires. Patients then received outpatient intravenous ketamine (0.5 to 2 mg · kg · h; mean dose 1.1 mg · kg · h) for 6 h/day for 5 consecutive days. Pain was assessed 1 month later. Treatment response was defined as greater than or equal to 30% pain relief (i.e., reduction in pain scores). We determined the relationship between our primary outcome measure of pain relief with pretreatment temporal summation of pain and with brain imaging measures of dynamic functional connectivity between the default mode network and the descending antinociceptive brain pathway. RESULTS: Approximately 50% of patients achieved pain relief (mean ± SD; Responders, 61 ± 35%; Nonresponders, 7 ± 14%). Pretreatment temporal summation was associated with the effect of ketamine (ρ = -0.52, P = 0.003) and was significantly higher in Responders (median [25th, 75th] = 200 [100, 345]) compared with Nonresponders (44 [9, 92]; P = 0.001). Pretreatment dynamic connectivity was also associated with the clinical effect of ketamine (ρ = 0.51, P = 0.004) and was significantly higher in Responders (mean ± SD, 0.55 ± 0.05) compared with Nonresponders (0.51 ± 0.03; P = 0.006). Finally, the dynamic engagement of the descending antinociceptive system significantly mediated the relationship between pretreatment pain facilitation and pain relief (95% CI, 0.005 to 0.065). CONCLUSIONS: These findings suggest that brain and behavioral measures have the potential to prognosticate and develop ketamine-based personalized pain therapy.


Subject(s)
Analgesics/therapeutic use , Brain/physiopathology , Ketamine/therapeutic use , Neuralgia/drug therapy , Pain Measurement/methods , Adult , Analgesics/administration & dosage , Brain/diagnostic imaging , Female , Humans , Infusions, Intravenous , Ketamine/administration & dosage , Magnetic Resonance Imaging , Male , Neuralgia/physiopathology , Pain/physiopathology , Surveys and Questionnaires , Time , Treatment Outcome
16.
J Neurosci ; 38(33): 7293-7302, 2018 08 15.
Article in English | MEDLINE | ID: mdl-30012686

ABSTRACT

Measures of moment-to-moment fluctuations in brain activity of an individual at rest have been shown to be a sensitive and reliable metric for studying pathological brain mechanisms across various chronic pain patient populations. However, the relationship between pathological brain activity and clinical symptoms are not well defined. Therefore, we used regional BOLD signal variability/amplitude of low-frequency oscillations (LFOs) to identify functional brain abnormalities in the dynamic pain connectome in chronic pain patients that are related to chronic pain characteristics (i.e., pain intensity). Moreover, we examined whether there were sex-specific attributes of these functional brain abnormalities and whether functional brain abnormalities in patients is related to pain intensity characteristics on different time scales. We acquired resting-state functional MRI and quantified frequency-specific regional LFOs in chronic pain patients with ankylosing spondylitis. We found that patients exhibit frequency-specific aberrations in LFOs. Specifically, lower-frequency (slow-5) abnormalities were restricted to the ascending pain pathway (thalamus and S1), whereas higher-frequency abnormalities also included the default mode (i.e., posterior cingulate cortex; slow-3, slow-4) and salience (i.e., mid-cingulate cortex) networks (slow-4). Using a machine learning approach, we found that these abnormalities, in particular within higher frequencies (slow-3), can be used to make generalizable inferences about patients' average pain ratings (trait-like pain) but not current (i.e., state-like) pain levels. Furthermore, we identified sex differences in LFOs in patients that were not present in healthy controls. These novel findings reveal mechanistic brain abnormalities underlying the longer-lasting symptoms (trait pain intensity) in chronic pain.SIGNIFICANCE STATEMENT Measures of moment-to-moment fluctuations in brain activity of an individual at rest have been shown to be a reliable metric for studying functional brain associated with chronic pain. The current results demonstrate that dysfunction in these intrinsic fluctuations/oscillations in the ascending pain pathway, default mode network, and salience network during resting state display sex differences and can be used to make inferences about trait-like pain intensity ratings in chronic pain patients. These results provide robust and generalizable implications for investigating brain mechanisms associated with longer-lasting/trait-like chronic pain symptoms.


Subject(s)
Biological Clocks/physiology , Brain Mapping , Chronic Pain/physiopathology , Connectome , Functional Neuroimaging , Machine Learning , Adolescent , Adult , Chronic Pain/etiology , Female , Gyrus Cinguli/physiology , Humans , Magnetic Resonance Imaging/methods , Male , Middle Aged , Rest , Sex Characteristics , Somatosensory Cortex/physiology , Spondylitis, Ankylosing/complications , Thalamus/physiology , Young Adult
17.
Pain ; 159(11): 2267-2276, 2018 Nov.
Article in English | MEDLINE | ID: mdl-29994989

ABSTRACT

Pain is a prevalent and debilitating symptom of multiple sclerosis (MS); yet, the mechanisms underlying this pain are unknown. Previous studies have found that the functional relationships between the salience network (SN), specifically the right temporoparietal junction a SN node, and other components of the dynamic pain connectome (default mode network [DMN], ascending and descending pathways) are abnormal in many chronic pain conditions. Here, we use resting-state functional magnetic resonance imaging and measures of static and dynamic functional connectivity (sFC and dFC), and regional BOLD variability to test the hypothesis that patients with MS have abnormal DMN-SN cross-network sFC, dFC abnormalities in SN-ascending and SN-descending pathways, and disrupted BOLD variability in the dynamic pain connectome that relates to pain inference and neuropathic pain (NP). Thirty-one patients with MS and 31 controls completed questionnaires to characterize pain and pain interference, and underwent a resting-state functional magnetic resonance imaging scan from which measures of sFC, dFC, and BOLD variability were compared. We found that (1) ∼50% of our patients had NP features, (2) abnormalities in SN-DMN sFC were driven by the mixed-neuropathic subgroup, (3) in patients with mixed NP, dFC measures showed that there was a striking change in how the SN was engaged with the ascending nociceptive pathway and descending modulation pathway, (4) BOLD variability was increased in the DMN, and (5) the degrees of sFC and BOLD variability abnormalities were related to pain interference. We propose that abnormal SN-DMN cross-network FC and temporal dynamics within and between regions of the dynamic pain connectome reflect MS pain features.


Subject(s)
Multiple Sclerosis/complications , Neural Pathways/diagnostic imaging , Pain/diagnostic imaging , Pain/etiology , Adult , Case-Control Studies , Connectome , Disability Evaluation , Female , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Male , Middle Aged , Oxygen/blood , Pain Measurement , Rest , Severity of Illness Index
18.
Pain ; 159(9): 1764-1776, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29708944

ABSTRACT

Communication within the brain is dynamic. Chronic pain can also be dynamic, with varying intensities experienced over time. Little is known of how brain dynamics are disrupted in chronic pain, or relates to patients' pain assessed at various timescales (eg, short-term state vs long-term trait). Patients experience pain "traits" indicative of their general condition, but also pain "states" that vary day to day. Here, we used network-based multivariate machine learning to determine how patterns in dynamic and static brain communication are related to different characteristics and timescales of chronic pain. Our models were based on resting-state dynamic functional connectivity (dFC) and static functional connectivity in patients with chronic neuropathic pain (NP) or non-NP. The most prominent networks in the models were the default mode, salience, and executive control networks. We also found that cross-network measures of dFC rather than static functional connectivity were better associated with patients' pain, but only in those with NP features. These associations were also more highly and widely associated with measures of trait rather than state pain. Furthermore, greater dynamic connectivity with executive control networks was associated with milder NP, but greater dynamic connectivity with limbic networks was associated with greater NP. Compared with healthy individuals, the dFC features most highly related to trait NP were also more abnormal in patients with greater pain. Our findings indicate that dFC reflects patients' overall pain condition (ie, trait pain), not just their current state, and is impacted by complexities in pain features beyond intensity.


Subject(s)
Brain/physiopathology , Machine Learning , Models, Neurological , Nerve Net/physiopathology , Neuralgia/physiopathology , Executive Function/physiology , Humans
19.
Pain ; 159(8): 1621-1630, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29697536

ABSTRACT

Resilience is a psychological trait that strongly predicts chronic pain-related health outcomes. The neural correlates of both pain and trait resilience are critical to understand the brain-behaviour relationship in chronic pain; yet, neural correlates of resilience in chronic pain states are unknown. However, measures of pain perception and a wide range of psychological health measures have been linked to function of the default mode network (DMN). Thus, we aimed to determine the relationships between resilience, pain perception, and functional connectivity (FC) within the DMN and between the DMN and other brain networks. Resting-state functional magnetic resonance imaging data were acquired from 51 chronic pain patients with a form of spondylarthritis (ankylosing spondylitis) and 51 healthy control participants. Participants completed a questionnaire on their individual trait resilience (the Resilience Scale), and patients reported their clinical pain. In healthy controls, we found within-DMN FC to be stronger in less resilient individuals. In patients with chronic pain, individual resilience was negatively correlated with pain and disease activity. Cross-network FC between the DMN and the sensorimotor network was abnormally high in patients with high clinical pain scores on the day of the study. Finally, there was an interaction between within-DMN FC and clinical pain report in patients: In patients reporting greater pain, the relationship between within-DMN connectivity and resilience was atypical. Thus, our findings reveal different neural representations of resilience and pain. The way in which these behavioural measures interact provides insight into understanding the neural correlates of chronic pain.


Subject(s)
Brain/diagnostic imaging , Chronic Pain/diagnostic imaging , Nerve Net/diagnostic imaging , Resilience, Psychological , Adolescent , Adult , Chronic Pain/psychology , Functional Neuroimaging , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Spondylitis, Ankylosing/diagnostic imaging , Spondylitis, Ankylosing/psychology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...