Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 147
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 3998, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734704

ABSTRACT

Symmetry-protected band degeneracy, coupled with a magnetic order, is the key to realizing novel magnetoelectric phenomena in topological magnets. While the spin-polarized nodal states have been identified to introduce extremely-sensitive electronic responses to the magnetic states, their possible role in determining magnetic ground states has remained elusive. Here, taking external pressure as a control knob, we show that a metal-insulator transition, a spin-reorientation transition, and a structural modification occur concomitantly when the nodal-line state crosses the Fermi level in a ferrimagnetic semiconductor Mn3Si2Te6. These unique pressure-driven magnetic and electronic transitions, associated with the dome-shaped Tc variation up to nearly room temperature, originate from the interplay between the spin-orbit coupling of the nodal-line state and magnetic frustration of localized spins. Our findings highlight that the nodal-line states, isolated from other trivial states, can facilitate strongly tunable magnetic properties in topological magnets.

2.
Philos Trans A Math Phys Eng Sci ; 381(2258): 20220331, 2023 Oct 16.
Article in English | MEDLINE | ID: mdl-37634539

ABSTRACT

We report the P-V-T equation of state measurements of B4C to 50 GPa and approximately 2500 K in laser-heated diamond anvil cells. We obtain an ambient temperature, third-order Birch-Murnaghan fit to the P-V data that yields a bulk modulus K0 of 221(2) GPa and derivative, (dK/dP)0 of 3.3(1). These were used in fits with both a Mie-Grüneisen-Debye model and a temperature-dependent, Birch-Murnaghan equation of state that includes thermal pressure estimated by thermal expansion (α) and a temperature-dependent bulk modulus (dK0/dT). The ambient pressure thermal expansion coefficient (α0 + α1T), Grüneisen γ(V) = γ0(V/V0)q and volume-dependent Debye temperature, were used as input parameters for these fits and found to be sufficient to describe the data in the whole P-T range of this study. This article is part of the theme issue 'Exploring the length scales, timescales and chemistry of challenging materials (Part 1)'.

3.
J Chem Phys ; 159(6)2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37551808

ABSTRACT

We employed high-pressure Brillouin scattering to study the pressure dependencies of acoustic modes of glycerol up to 14 GPa at 300 K. We observed longitudinal acoustic velocities and transverse acoustic velocities for the first time from 5 to 14 GPa. The results allow the determination of a complete set of elastic properties and an accurate determination of the pressure-volume (P-V) equation of state (EOS). EOS parameters, K0 = 14.9 ± 1.8 GPa and K'0 = 5.6 ± 0.5, were determined from fits to the data from ambient pressure to 14 GPa. Direct volume measurements of the P-V EOS are consistent with those determined by Brillouin scattering. A deviation from a Cauchy-like relationship for elastic properties was observed, and the pressure dependencies of the photoelastic constants and relaxation times were documented from 5 to 14 GPa. These results have broad implications for glass-forming liquids, viscoelastic theory, and mode coupling theory.

4.
Materials (Basel) ; 16(3)2023 Feb 02.
Article in English | MEDLINE | ID: mdl-36770283

ABSTRACT

Brillouin scattering spectroscopy with diamond anvil cells was used by measuring the pressure dependence of the sound-relevant polymer material, glass-forming liquid, and H2O (water and ice VII) velocities of the material from ambient pressure to 12 GPa at room temperature. Measurements of 20%, 10%, and 4% gelatin solutions were performed. For comparison purposes, we also measured the pressure dependence of the sound velocity of animal tissue up to 10 GPa. We analyzed the Brillouin data using the Tait and Vinet equations of state. We discussed the possible influence of frequency dispersion on bulk modulus at low pressure. We compared the elastic moduli obtained for gelatin to those of several other polymers.

5.
Proc Natl Acad Sci U S A ; 120(8): e2218405120, 2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36787368

ABSTRACT

Most metals adopt simple structures such as body-centered cubic (BCC), face-centered cubic (FCC), and hexagonal close-packed (HCP) structures in specific groupings across the periodic table, and many undergo transitions to surprisingly complex structures on compression, not expected from conventional free-electron-based theories of metals. First-principles calculations have been able to reproduce many observed structures and transitions, but a unified, predictive theory that underlies this behavior is not yet in hand. Discovered by analyzing the electronic properties of metals in various lattices over a broad range of sizes and geometries, a remarkably simple theory shows that the stability of metal structures is governed by electrons occupying local interstitial orbitals and their strong chemical interactions. The theory provides a basis for understanding and predicting structures in solid compounds and alloys over a broad range of conditions.

6.
J Am Chem Soc ; 144(29): 13394-13400, 2022 Jul 27.
Article in English | MEDLINE | ID: mdl-35820372

ABSTRACT

Achieving room-temperature superconductivity has been an enduring scientific pursuit driven by broad fundamental interest and enticing potential applications. The recent discovery of high-pressure clathrate superhydride LaH10 with superconducting critical temperatures (Tc) of 250-260 K made it tantalizingly close to realizing this long-sought goal. Here, we report a remarkable finding based on an advanced crystal structure search method of a new class of extremely hydrogen-rich clathrate superhydride MH18 (M: rare-earth/actinide atom) stoichiometric compounds stabilized at an experimentally accessible pressure of 350 GPa. These compounds are predicted to host Tc up to 330 K, which is well above room temperature. The bonding and electronic properties of these MH18 clathrate superhydrides closely resemble those of atomic metallic hydrogen, giving rise to the highest Tc hitherto found in a thermodynamically stable hydride compound. An in-depth study of these extreme superhydrides offers insights for elucidating phonon-mediated superconductivity above room temperature in hydrogen-rich and other low-Z materials.

7.
Proc Natl Acad Sci U S A ; 119(27): e2117281119, 2022 Jul 05.
Article in English | MEDLINE | ID: mdl-35763575

ABSTRACT

Formation of vitreous ice during rapid compression of water at room temperature is important for biology and the study of biological systems. Here, we show that Raman spectra of rapidly compressed water at greater than 1 GPa at room temperature exhibits the signature of high-density amorphous ice, whereas the X-ray diffraction (XRD) pattern is dominated by crystalline ice VI. To resolve this apparent contradiction, we used molecular dynamics simulations to calculate full vibrational spectra and diffraction patterns of mixtures of vitreous ice and ice VI, including embedded interfaces between the two phases. We show quantitatively that Raman spectra, which probe the local polarizability with respect to atomic displacements, are dominated by the vitreous phase, whereas a small amount of the crystalline component is readily apparent by XRD. The results of our combined experimental and theoretical studies have implications for detecting vitreous phases of water, survival of biological systems under extreme conditions, and biological imaging. The results provide additional insight into the stable and metastable phases of H2O as a function of pressure and temperature, as well as of other materials undergoing pressure-induced amorphization and other metastable transitions.

8.
Proc Natl Acad Sci U S A ; 119(26): e2122691119, 2022 Jun 28.
Article in English | MEDLINE | ID: mdl-35749362

ABSTRACT

Solid molecular hydrogen has been predicted to be metallic and high-temperature superconducting at ultrahigh hydrostatic pressures that push current experimental limits. Meanwhile, little is known about the influence of nonhydrostatic conditions on its electronic properties at extreme pressures where anisotropic stresses are inevitably present and may also be intentionally introduced. Here we show by first-principles calculations that solid molecular hydrogen compressed to multimegabar pressures can sustain large anisotropic compressive or shear stresses that, in turn, cause major crystal symmetry reduction and charge redistribution that accelerate bandgap closure and promote superconductivity relative to pure hydrostatic compression. Our findings highlight a hitherto largely unexplored mechanism for creating superconducting dense hydrogen, with implications for exploring similar phenomena in hydrogen-rich compounds and other molecular crystals.

9.
Phys Rev Lett ; 128(18): 186001, 2022 May 06.
Article in English | MEDLINE | ID: mdl-35594097

ABSTRACT

There is great current interest in multicomponent superhydrides due to their unique quantum properties under pressure. A remarkable example is the ternary superhydride Li_{2}MgH_{16} computationally identified to have an unprecedented high superconducting critical temperature T_{c} of ∼470 K at 250 GPa. However, the very high synthesis pressures required remains a significant hurdle for detailed study and potential applications. In this Letter, we evaluate the feasibility of synthesizing ternary Li-Mg superhydrides by the recently proposed pressure-potential (P^{2}) method that uniquely combines electrochemistry and applied pressure to control synthesis and stability. The results indicate that it is possible to synthesize Li-Mg superhydrides at modest pressures by applying suitable electrode potentials. Using pressure alone, no Li-Mg ternary hydrides are predicted to be thermodynamically stable, but in the presence of electrode potentials, both Li_{2}MgH_{16} and Li_{4}MgH_{24} can be stabilized at modest pressures. Three polymorphs are predicted as ground states of Li_{2}MgH_{16} below 300 GPa, with transitions at 33 and 160 GPa. The highest pressure phase is superconducting, while the two at lower pressures are not. Our findings point out the potentially important role of the P^{2} method in controlling phase stability of complex multicomponent superhydrides.

11.
Science ; 375(6577): 202-205, 2022 Jan 14.
Article in English | MEDLINE | ID: mdl-35025665

ABSTRACT

The discovery of more than 4500 extrasolar planets has created a need for modeling their interior structure and dynamics. Given the prominence of iron in planetary interiors, we require accurate and precise physical properties at extreme pressure and temperature. A first-order property of iron is its melting point, which is still debated for the conditions of Earth's interior. We used high-energy lasers at the National Ignition Facility and in situ x-ray diffraction to determine the melting point of iron up to 1000 gigapascals, three times the pressure of Earth's inner core. We used this melting curve to determine the length of dynamo action during core solidification to the hexagonal close-packed (hcp) structure. We find that terrestrial exoplanets with four to six times Earth's mass have the longest dynamos, which provide important shielding against cosmic radiation.

12.
Proc Natl Acad Sci U S A ; 119(1)2022 Jan 04.
Article in English | MEDLINE | ID: mdl-34969863

ABSTRACT

Light elements in Earth's core play a key role in driving convection and influencing geodynamics, both of which are crucial to the geodynamo. However, the thermal transport properties of iron alloys at high-pressure and -temperature conditions remain uncertain. Here we investigate the transport properties of solid hexagonal close-packed and liquid Fe-Si alloys with 4.3 and 9.0 wt % Si at high pressure and temperature using laser-heated diamond anvil cell experiments and first-principles molecular dynamics and dynamical mean field theory calculations. In contrast to the case of Fe, Si impurity scattering gradually dominates the total scattering in Fe-Si alloys with increasing Si concentration, leading to temperature independence of the resistivity and less electron-electron contribution to the conductivity in Fe-9Si. Our results show a thermal conductivity of ∼100 to 110 W⋅m-1⋅K-1 for liquid Fe-9Si near the topmost outer core. If Earth's core consists of a large amount of silicon (e.g., > 4.3 wt %) with such a high thermal conductivity, a subadiabatic heat flow across the core-mantle boundary is likely, leaving a 400- to 500-km-deep thermally stratified layer below the core-mantle boundary, and challenges proposed thermal convection in Fe-Si liquid outer core.

13.
J Phys Condens Matter ; 34(18)2022 Mar 03.
Article in English | MEDLINE | ID: mdl-34544070

ABSTRACT

Designing materials with advanced functionalities is the main focus of contemporary solid-state physics and chemistry. Research efforts worldwide are funneled into a few high-end goals, one of the oldest, and most fascinating of which is the search for an ambient temperature superconductor (A-SC). The reason is clear: superconductivity at ambient conditions implies being able to handle, measure and access a single, coherent, macroscopic quantum mechanical state without the limitations associated with cryogenics and pressurization. This would not only open exciting avenues for fundamental research, but also pave the road for a wide range of technological applications, affecting strategic areas such as energy conservation and climate change. In this roadmap we have collected contributions from many of the main actors working on superconductivity, and asked them to share their personal viewpoint on the field. The hope is that this article will serve not only as an instantaneous picture of the status of research, but also as a true roadmap defining the main long-term theoretical and experimental challenges that lie ahead. Interestingly, although the current research in superconductor design is dominated by conventional (phonon-mediated) superconductors, there seems to be a widespread consensus that achieving A-SC may require different pairing mechanisms.In memoriam, to Neil Ashcroft, who inspired us all.

14.
Proc Natl Acad Sci U S A ; 118(46)2021 11 16.
Article in English | MEDLINE | ID: mdl-34753821

ABSTRACT

Recently, superhydrides have been computationally identified and subsequently synthesized with a variety of metals at very high pressures. In this work, we evaluate the possibility of synthesizing superhydrides by uniquely combining electrochemistry and applied pressure. We perform computational searches using density functional theory and particle swarm optimization calculations over a broad range of pressures and electrode potentials. Using a thermodynamic analysis, we construct pressure-potential phase diagrams and provide an alternate synthesis concept, pressure-potential ([Formula: see text]), to access phases having high hydrogen content. Palladium-hydrogen is a widely studied material system with the highest hydride phase being Pd3H4 Most strikingly for this system, at potentials above hydrogen evolution and ∼ 300 MPa pressure, we find the possibility to make palladium superhydrides (e.g., PdH10). We predict the generalizability of this approach for La-H, Y-H, and Mg-H with 10- to 100-fold reduction in required pressure for stabilizing phases. In addition, the [Formula: see text] strategy allows stabilizing additional phases that cannot be done purely by either pressure or potential and is a general approach that is likely to work for synthesizing other hydrides at modest pressures.

15.
J Chem Phys ; 155(11): 114703, 2021 Sep 21.
Article in English | MEDLINE | ID: mdl-34551552

ABSTRACT

X-ray diffraction indicates that the structure of the recently discovered carbonaceous sulfur hydride (C-S-H) room-temperature superconductor is derived from previously established van der Waals compounds found in the H2S-H2 and CH4-H2 systems. Crystals of the superconducting phase were produced by a photochemical synthesis technique, leading to the superconducting critical temperature Tc of 288 K at 267 GPa. X-ray diffraction patterns measured from 124 to 178 GPa, within the pressure range of the superconducting phase, are consistent with an orthorhombic structure derived from the Al2Cu-type determined for (H2S)2H2 and (CH4)2H2 that differs from those predicted and observed for the S-H system at these pressures. The formation and stability of the C-S-H compound can be understood in terms of the close similarity in effective volumes of the H2S and CH4 components, and denser carbon-bearing S-H phases may form at higher pressures. The results are crucial for understanding the very high superconducting Tc found in the C-S-H system at megabar pressures.

16.
Phys Rev Lett ; 126(11): 117002, 2021 Mar 19.
Article in English | MEDLINE | ID: mdl-33798365

ABSTRACT

The discovery of near room temperature superconductivity in clathrate hydrides has ignited the search for both higher temperature superconductors and deeper understanding of the underlying physical phenomena. In a conventional electron-phonon mediated picture for the superconductivity for these materials, the high critical temperatures predicted and observed can be ascribed to the low mass of the protons, but this also poses nontrivial questions associated with how the proton dynamics affect the superconductivity. Using clathrate superhydride Li_{2}MgH_{16} as an example, we show through ab initio path integral simulations that proton diffusion in this system is remarkably high, with a diffusion coefficient, for example, reaching 6×10^{-6} cm^{2}/s at 300 K and 250 GPa. The diffusion is achieved primarily through proton transfer among interstitial voids within the otherwise rigid Li_{2}Mg sublattice at these conditions. The findings indicate the coexistence of proton quantum diffusion together with hydrogen-induced superconductivity, with implications for other very-high-temperature superconducting hydrides.

17.
J Chem Phys ; 154(12): 124709, 2021 Mar 28.
Article in English | MEDLINE | ID: mdl-33810644

ABSTRACT

Evolutionary crystal structure prediction searches have been employed to explore the ternary Li-F-H system at 300 GPa. Metastable phases were uncovered within the static lattice approximation, with LiF3H2, LiF2H, Li3F4H, LiF4H4, Li2F3H, and LiF3H lying within 50 meV/atom of the 0 K convex hull. All of these phases contain HnFn+1 - (n = 1, 2) anions and Li+ cations. Other structural motifs such as LiF slabs, H3 + molecules, and Fδ- ions are present in some of the low enthalpy Li-F-H structures. The bonding within the HnFn+1 - molecules, which may be bent or linear, symmetric or asymmetric, is analyzed. The five phases closest to the hull are insulators, while LiF3H is metallic and predicted to have a vanishingly small superconducting critical temperature. Li3F4H is predicted to be stable at zero pressure. This study lays the foundation for future investigations of the role of temperature and anharmonicity on the stability and properties of compounds and alloys in the Li-F-H ternary system.

18.
Proc Natl Acad Sci U S A ; 117(35): 21088-21094, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32817475

ABSTRACT

The recent discovery in high-pressure experiments of compounds stable to 24-26 GPa with Fe4O5, Fe5O6, Fe7O9, and Fe9O11 stoichiometry has raised questions about their existence within the Earth's mantle. Incorporating both ferric and ferrous iron in their structures, these oxides if present within the Earth could also provide insight into diamond-forming processes at depth in the planet. Here we report the discovery of metallic particles, dominantly of FeNi (Fe0.71Ni0.24Cu0.05), in close spatial relation with nearly pure magnetite grains from a so-called superdeep diamond from the Earth's mantle. The microstructural relation of magnetite within a ferropericlase (Mg0.60Fe0.40)O matrix suggests exsolution of the former. Taking into account the bulk chemistry reconstructed from the FeNi(Cu) alloy, we propose that it formed by decomposition of a complex metal M oxide (M4O5) with a stoichiometry of (Fe3+2.15Fe2+1.59Ni2+0.17Cu+0.04)Σ=3.95O5 We further suggest a possible link between this phase and variably oxidized ferropericlase that is commonly trapped in superdeep diamond. The observation of FeNi(Cu) metal in relation to magnetite exsolved from ferropericlase is interpreted as arising from a multistage process that starts from diamond encapsulation of ferropericlase followed by decompression and cooling under oxidized conditions, leading to the formation of complex oxides such as Fe4O5 that subsequently decompose at shallower P-T conditions.

19.
Proc Natl Acad Sci U S A ; 117(11): 5638-5643, 2020 Mar 17.
Article in English | MEDLINE | ID: mdl-32127483

ABSTRACT

The anomalous nondipolar and nonaxisymmetric magnetic fields of Uranus and Neptune have long challenged conventional views of planetary dynamos. A thin-shell dynamo conjecture captures the observed phenomena but leaves unexplained the fundamental material basis and underlying mechanism. Here we report extensive quantum-mechanical calculations of polymorphism in the hydrogen-oxygen system at the pressures and temperatures of the deep interiors of these ice giant planets (to >600 GPa and 7,000 K). The results reveal the surprising stability of solid and fluid trihydrogen oxide (H3O) at these extreme conditions. Fluid H3O is metallic and calculated to be stable near the cores of Uranus and Neptune. As a convecting fluid, the material could give rise to the magnetic field consistent with the thin-shell dynamo model proposed for these planets. H3O could also be a major component in both solid and superionic forms in other (e.g., nonconvecting) layers. The results thus provide a materials basis for understanding the enigmatic magnetic-field anomalies and other aspects of the interiors of Uranus and Neptune. These findings have direct implications for the internal structure, composition, and dynamos of related exoplanets.

20.
Proc Natl Acad Sci U S A ; 117(8): 4021-4026, 2020 Feb 25.
Article in English | MEDLINE | ID: mdl-32029594

ABSTRACT

Hydrogen-containing materials are of fundamental as well as technological interest. An outstanding question for both is the amount of hydrogen that can be incorporated in such materials, because that determines dramatically their physical properties such as electronic and crystalline structure. The number of hydrogen atoms in a metal is controlled by the interaction of hydrogens with the metal and by the hydrogen-hydrogen interactions. It is well established that the minimal possible hydrogen-hydrogen distances in conventional metal hydrides are around 2.1 Å under ambient conditions, although closer H-H distances are possible for materials under high pressure. We present inelastic neutron scattering measurements on hydrogen in [Formula: see text] showing nonexpected scattering at low-energy transfer. The analysis of the spectra reveals that these spectral features in part originate from hydrogen vibrations confined by neighboring hydrogen at distances as short as 1.6 Å. These distances are much smaller than those found in related hydrides, thereby violating the so-called Switendick criterion. The results have implications for the design and creation of hydrides with additional properties and applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...