Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(3)2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36770240

ABSTRACT

The study presents an experimental evaluation to improve the resistivity of binders with "Styrene-Butadiene-Styrene" (SBS) and "Processed oil" by studying the physical properties, rheology, and cracking. For this experiment, PG 64-22 was mixed with SBS at different percentages of 5%, 10%, and 15% by weight of the original binder with two processed oil contents of 6% and 12% by weight of the binder. Laboratory tests have been conducted at various high, medium, and low temperature ranges to evaluate their properties. The processed oil polymer modified asphalt (PMA) binder is artificially aged in both the short and long-term using a Rolling Thin Film Oven (RTFO) and a Pressure Aging Vessel (PAV). The Superpave testing method was performed on modified binders using a Rotational Viscometer (RV), Dynamic Shear Rheometer (DSR), and Bending Beam Rheometer (BBR). The results of this study illustrate (1) The addition of SBS leads to higher viscosity, but the co-modification of asphalt binder with the processed oil shows a significant modulation of the viscosity value. (2) In addition, processed oil reduced the resistance to rutting, but the addition of SBS significantly improved the rutting resistance of the asphalt binder. (3) The addition of SBS and processed oil improved the value of G sin δ, notably. (4) According to BBR, it has been shown that the addition of SBS in addition to the processed oil improves the stiffness values of modified asphalt binders.

2.
Materials (Basel) ; 15(11)2022 May 24.
Article in English | MEDLINE | ID: mdl-35683038

ABSTRACT

This study investigates the effectiveness of processed oil in the modification of PG 64-22 and PG 76-22 by assessing their physical and rheological properties, and multiple comparison was conducted between the two binders. The base binders PG 64-22 and PG 76-22 were blended with processed oil at four different percentages of contents (3%, 6%, 9% and 12% by the weight of the binder) and compared with the control binder in each test. The base and modified binders were artificially short-term and long-term aged using a rolling thin film oven (RTFO) and pressure aging vessel (PAV) procedures. Superpave binder tests were performed on the modified binders by applying a rotational viscometer (RV), dynamic shear rheometer (DSR), and bending beam rheometer (BBR). The comparisons and results presented in this study indicate that (1) the processed oil has a significant effect on the binders' viscosity, which changes with respect to the increment of processed oil content. The viscosity of both modified binders decreased with the addition of 3, 6, 9 and 12% processed oil; (2) the performed DSR test showed that the addition of processed oil had a negative effect on the rutting resistance for both binders, since in PG 64-22, G*/Sin δ values decreased by 55, 65, 75 and 83% with the addition of 3, 6, 9 and 12% processed oil, respectively, while a decrement of G*/Sin δ of 24, 45, 58 and 65% with the addition of 3, 6, 9 and 12% processed oil was observed in PG 76-22; meanwhile, the fatigue cracking performance was improved and was found to be effective, while G* Sin δ in PG76-22 decreased by 9, 30, 36, and 52% and in PG 64-22 by 27, 44, 53, and 67% with the addition of 3, 6, 9 and 12% processed oil; (3) the results from the BBR test indicate significant improvement in the thermal cracking properties of the binders. The addition of 3, 6, 9 and 12% processed oil resulted in a decrease in the stiffness of both the PG 64-22 and PG 76-22 binders, with a positive effect consequently being observed on the m-values of the binders.

3.
Materials (Basel) ; 14(24)2021 Dec 12.
Article in English | MEDLINE | ID: mdl-34947263

ABSTRACT

The study describes the laboratory assessment (physical and rheological properties) of the binders (PG 64-22 and PG 76-22) modified with Styrene Butadiene Rubber (SBR), and a comprehensive comparison between these two modified binder types. PG 64-22 and PG 76-22 were used as base binders. Both of the base binders were blended with SBR at four different percentages of content (0%, 4%, 6%, and 8% by the weight of the binder). The base and modified binders were artificially short-term and long-term aged using a rolling thin film oven (RTFO) and pressure aging vessel (PAV) procedures. Superpave binder tests were conducted on the SBR modified binder using rotational viscometer (RV), dynamic shear rheometer (DSR), and bending beam rheometer (BBR). In depth rutting performance was investigated using Multiple Stress Creep Recovery (MSCR). The results of this study indicated that (1) the addition of SBR into both binders increased the viscosity and polymer modified asphalt (PMA) binders observed to have more significant effect on its viscosity property; (2) the higher the SBR content, the better the rutting resistance of the binder and it is observed that the effect is prominent on the control binder; (3) MSCR test results showed that the SBR modified binders improved the binder percentage recovery and found to have a more significant effect on the PG 76-22 binder compared to PG 64-22; and (4) both the control PG 64-22 and PMA PG 76-22 binders resulted in similar trends on the cracking properties and were found to have insignificant effects due to the addition of an SBR modifier.

SELECTION OF CITATIONS
SEARCH DETAIL
...