Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 5: 8775, 2015 Mar 05.
Article in English | MEDLINE | ID: mdl-25739522

ABSTRACT

A good material for CO2 capture should possess some specific properties: (i) a large effective surface area with good adsorption capacity, (ii) selectivity for CO2, (iii) regeneration capacity with minimum energy input, allowing reutilization of the material for CO2 adsorption, and (iv) low cost and high environmental friendliness. Smectite clays are layered nanoporous materials that may be good candidates in this context. Here we report experiments which show that gaseous CO2 intercalates into the interlayer nano-space of smectite clay (synthetic fluorohectorite) at conditions close to ambient. The rate of intercalation, as well as the retention ability of CO2 was found to be strongly dependent on the type of the interlayer cation, which in the present case is Li(+), Na(+) or Ni(2+). Interestingly, we observe that the smectite Li-fluorohectorite is able to retain CO2 up to a temperature of 35°C at ambient pressure, and that the captured CO2 can be released by heating above this temperature. Our estimates indicate that smectite clays, even with the standard cations analyzed here, can capture an amount of CO2 comparable to other materials studied in this context.

2.
Sci Rep ; 2: 618, 2012.
Article in English | MEDLINE | ID: mdl-22943004

ABSTRACT

Clays are of paramount importance for soil stability, but also in applications ranging from oil recovery to composites and hydrogels. Generically, clays are divided into two subclasses: macroscopically swelling, 'active' clays that have the capacity for taking up large amounts of water to form stable gels, and 'passive' or non-swelling clays; the former stabilize soils whereas the latter are known to lead to landslides. However, it has been unclear so far what mechanisms underlie clay swelling. Here, we report the first observation of a temperature-induced transition from a passive to an active, swelling clay. We propose a simple description of the swelling transition; while net attractive interactions are dominant at low temperatures so that the clay particles remain attached to each other in stacks, at higher temperatures it is energetically favourable for the clay to swell due to the entropy that is gained by counterions which are liberated during swelling.

3.
Phys Rev E Stat Nonlin Soft Matter Phys ; 81(4 Pt 1): 041702, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20481735

ABSTRACT

We have studied stable strata of gravity-induced phase separation in suspensions of synthetic Na-fluorohectorite clay in saline solutions. We have observed how the strata depend on clay concentration as well as on salt content. The mass distribution and density variation at the isotropic-nematic interface indicate that existing models and assumptions in existing simulations are able to relatively well account for the observed behavior. We suggest that discrepancies could be due to the high polydispersity and the irregular shape of our Na-fluorohectorite particles, as well as diffusive double-layer effects, which could result in a competition between nematic ordering and gelation. The dependence on ionic strength displays three main regimes irrespective of clay concentration. At low ionic strength (approximately 0.1-5 mM NaCl), the Debye screening length is longer than the van der Waals force range. In this regime, the particles repel each other electrostatically and entropy-driven Onsager-type nematic ordering may occur, although gelation effects could also play a role. For ionic strengths above about 5 mM, we believe that the van der Waals force comes into play and that particles attract each other locally according to the classical Derjaguin, Landau, Verwey, and Overbeek (DLVO) model of colloid interactions, resulting in a small-domain regime of attractive nematiclike ordering. In the third regime, for ionic strengths above approximately 10 mM, the clay particles aggregate into larger assemblies, due to the dominant van der Waals force, and the observed birefringency is reduced. We have studied the nematic phase in detail between crossed polarizers and have found textures showing nematic Schlieren patterns. By rotating the polarizers as well as the samples, we have observed examples of disclinations of strengths -1, -1/2, and +1.

4.
Phys Rev E Stat Nonlin Soft Matter Phys ; 82(3 Pt 2): 036315, 2010 Sep.
Article in English | MEDLINE | ID: mdl-21230179

ABSTRACT

The swelling of layered smectite clay particles consists of a change in the interlayer repetition distance ( d -spacing) as a function of temperature and humidity. For the synthetic clay sodium fluorohectorite, hydrodynamically stable hydration states with zero, one and two intercalated monolayers of water have previously been reported, with discrete jumps in d -spacing at the transitions between the hydration states. Keeping the temperature fixed and varying the ambient relative humidity, we find small reproducible d -spacing changes also within the hydration states. These changes are monotonous as a function of relative humidity, and one order of magnitude smaller than the shift in d -spacing that is typical of the transition between two hydration states. The reproducibility and reliability of this relative humidity controlled d -shift enables us to use the interlayer repetition distance d as a measure of the local humidity surrounding the clay particles. We provide an example of application of this observation: imposing a humidity gradient over a quasi-one-dimensional temperature-controlled sample, and using x-ray diffraction to record the d -spacing, we are able to extract profiles of the relative humidity along the sample length. Their time evolution describes the transport of water through the mesoporous space inside the clay. An analysis of the measured humidity profiles based on the Boltzmann transformation, under certain simplifying assumptions, yields a diffusive behavior that is either normal or possibly weakly anomalous.

SELECTION OF CITATIONS
SEARCH DETAIL
...