Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev E ; 96(3-1): 033201, 2017 Sep.
Article in English | MEDLINE | ID: mdl-29346907

ABSTRACT

We present a new acceleration mechanism for electrons taking place during the interaction of an ultrashort, nonrelativistic laser pulse with a plasma generated at the surface of a solid density target. In our experiments, the plasma is created by a laser pulse with femtosecond duration and an energy of about 1 mJ focused to intensities of above 10^{17}W/cm^{2}. We observe that the electron energies acquired by this mechanism exceed the ponderomotive potential of the laser by an order of magnitude. This result was reproduced and quantitatively confirmed by particle-in-cell simulations, which further revealed that the observed electron acceleration is based on quasistatic electric fields caused by the space charges of ponderomotively preaccelerated electrons. This acceleration process is examined in more detail by a simplified numerical model, which allows a qualitative explanation of the final electron energies.

2.
Opt Lett ; 38(9): 1563-5, 2013 May 01.
Article in English | MEDLINE | ID: mdl-23632552

ABSTRACT

We demonstrate the feasibility of measuring x-ray refractive indices by transparent edge diffraction without recourse to the Kramers-Kronig relations. The method requires a coherent x-ray source, a transparent sample with a straight edge, and a high resolution x-ray detector. Here, we use the aluminum Kα radiation originating from a laser-produced plasma to coherently illuminate the edge of thin aluminum and beryllium foils. The resulting diffraction patterns are recorded with an x-ray CCD camera. From least-squares fits of Fresnel diffraction modeling to the measured data we determine the refractive index of Al and Be at the wavelength of the Al Kα radiation (0.834 nm, 1.49 keV).

3.
Phys Rev Lett ; 109(12): 125002, 2012 Sep 21.
Article in English | MEDLINE | ID: mdl-23005951

ABSTRACT

Harmonic generation in the limit of ultrasteep density gradients is studied experimentally. Observations reveal that, while the efficient generation of high order harmonics from relativistic surfaces requires steep plasma density scale lengths (L(p)/λ < 1), the absolute efficiency of the harmonics declines for the steepest plasma density scale length L(p)→0, thus demonstrating that near-steplike density gradients can be achieved for interactions using high-contrast high-intensity laser pulses. Absolute photon yields are obtained using a calibrated detection system. The efficiency of harmonics reflected from the laser driven plasma surface via the relativistic oscillating mirror was estimated to be in the range of 10(-4)-10(-6) of the laser pulse energy for photon energies ranging from 20-40 eV, with the best results being obtained for an intermediate density scale length.

4.
Phys Rev Lett ; 106(18): 185002, 2011 May 06.
Article in English | MEDLINE | ID: mdl-21635096

ABSTRACT

When a laser pulse hits a solid surface with relativistic intensities, XUV attosecond pulses are generated in the reflected light. We present an experimental and theoretical study of the temporal properties of attosecond pulse trains in this regime. The recorded harmonic spectra show distinct fine structures which can be explained by a varying temporal pulse spacing that can be controlled by the laser contrast. The pulse spacing is directly related to the cycle-averaged motion of the reflecting surface. Thus the harmonic spectrum contains information on the relativistic plasma dynamics.

5.
Phys Rev Lett ; 102(19): 195001, 2009 May 15.
Article in English | MEDLINE | ID: mdl-19518963

ABSTRACT

Electrons have been accelerated from solid target surfaces by sub-10-fs laser pulses of 120 microJ energy which were focused to an intensity of 2x10;{16} W/cm;{2}. The electrons have a narrow angular distribution, and their observed energies exceed 150 keV. We show that these energies are not to be attributed to collective plasma effects but are mainly gained directly via repeated acceleration in the transient field pattern created by incident and reflected laser, alternating with phase-shift-generating scattering events in the solid.

6.
Phys Rev Lett ; 96(8): 085002, 2006 Mar 03.
Article in English | MEDLINE | ID: mdl-16606192

ABSTRACT

Close to solid state density plasmas with peak electron temperatures of about 190 eV have been generated with sub-10-fs laser pulses incident on solid targets. Extreme ultraviolet (XUV) spectroscopy is used to investigate the K shell emission from the plasma. In the spectra, a series limit for the H- and He-like resonance lines becomes evident which is explained by pressure ionization in the dense plasma. The spectra are consistent with computer simulations calculating the XUV emission and the expansion of the plasma.

SELECTION OF CITATIONS
SEARCH DETAIL
...