Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Exp Biol ; 206(Pt 22): 4057-65, 2003 Nov.
Article in English | MEDLINE | ID: mdl-14555746

ABSTRACT

Hypoxia-induced shortening of cardiac action potential duration (APD) has been attributed in mammalian hearts to the activation of ATP-sensitive potassium (KATP) channels. Since KATP channels are also present at high densities in the hearts of vertebrate ectotherms, speculation arises as to their function during periods of reduced environmental oxygen. The purpose of the present study was to determine whether nitric oxide (NO) plays a role in cardiac sarcolemmal KATP channel activation during hypoxia in a species with a high degree of tolerance to low oxygen environments: the goldfish (Carassius auratus). Conventional intracellular and patch-clamp recording techniques were used to record responses from excised ventricles or isolated ventricular myocytes and inside-out patches, respectively, from fish acclimated at 21 degrees C. During moderate, substrate-free hypoxia (6.1 +/- 0.2 kPa), ventricular APD was significantly shortened at 50% and 90% of full repolarization, a response that was reversible upon reoxygenation and blocked by the KATP channel antagonist BDM. Under normoxic conditions, APD was also reduced in the presence of the NO-donor SNAP (100 micromol l(-1)). In cell-attached membrane patches, sarcolemmal KATP channel activity was enhanced after 10 min hypoxia, an effect that was reduced or eliminated by simultaneous exposure to BDM, to the guanylate cyclase inhibitor ODQ or to the NO synthase inhibitor L-NAME. In cell-free patches, KATP channel activity was abolished by 2 mmol l(-1) ATP but increased by SNAP; the cGMP analog 8-Br-cGMP (200 micromol l(-1)) also enhanced activity, an effect that was eliminated by BDM. Our data indicate that NO synthesized in cardiac myocytes could enhance sarcolemmal KATP channel activation during moderate hypoxia in goldfish. This response may serve a cardioprotective role by helping to conserve ATP or by reducing intracellular Ca2+ accumulation.


Subject(s)
Diacetyl/analogs & derivatives , Goldfish/physiology , Hypoxia/physiopathology , Myocardium/metabolism , Nitric Oxide/pharmacology , Penicillamine/analogs & derivatives , Potassium Channels/drug effects , Action Potentials/drug effects , Analysis of Variance , Animals , Diacetyl/pharmacology , Goldfish/metabolism , NG-Nitroarginine Methyl Ester , Oxadiazoles , Patch-Clamp Techniques , Penicillamine/pharmacology , Quinoxalines , Sarcolemma/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...