Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
PLoS Biol ; 20(6): e3001659, 2022 06.
Article in English | MEDLINE | ID: mdl-35658004

ABSTRACT

In chemical synapses undergoing high frequency stimulation, vesicle components can be retrieved from the plasma membrane via a clathrin-independent process called activity-dependent bulk endocytosis (ADBE). Alix (ALG-2-interacting protein X/PDCD6IP) is an adaptor protein binding to ESCRT and endophilin-A proteins which is required for clathrin-independent endocytosis in fibroblasts. Alix is expressed in neurons and concentrates at synapses during epileptic seizures. Here, we used cultured neurons to show that Alix is recruited to presynapses where it interacts with and concentrates endophilin-A during conditions triggering ADBE. Using Alix knockout (ko) neurons, we showed that this recruitment, which requires interaction with the calcium-binding protein ALG-2, is necessary for ADBE. We also found that presynaptic compartments of Alix ko hippocampi display subtle morphological defects compatible with flawed synaptic activity and plasticity detected electrophysiologically. Furthermore, mice lacking Alix in the forebrain undergo less seizures during kainate-induced status epilepticus and reduced propagation of the epileptiform activity. These results thus show that impairment of ADBE due to the lack of neuronal Alix leads to abnormal synaptic recovery during physiological or pathological repeated stimulations.


Subject(s)
Endocytosis , Synapses , Animals , Brain/metabolism , Calcium-Binding Proteins/metabolism , Clathrin/metabolism , Endocytosis/physiology , Mice , Neurons/physiology , Synapses/metabolism
2.
Cell Mol Life Sci ; 75(4): 757-773, 2018 02.
Article in English | MEDLINE | ID: mdl-28956068

ABSTRACT

Amyloid beta peptide (Aß), the main component of senile plaques of Alzheimer's disease brains, is produced by sequential cleavage of amyloid precursor protein (APP) and of its C-terminal fragments (CTFs). An unanswered question is how amyloidogenic peptides spread throughout the brain during the course of the disease. Here, we show that small lipid vesicles called exosomes, secreted in the extracellular milieu by cortical neurons, carry endogenous APP and are strikingly enriched in CTF-α and the newly characterized CTF-η. Exosomes from N2a cells expressing human APP with the autosomal dominant Swedish mutation contain Aß peptides as well as CTF-α and CTF-η, while those from cells expressing the non-mutated form of APP only contain CTF-α and CTF-η. APP and CTFs are sorted into a subset of exosomes which lack the tetraspanin CD63 and specifically bind to dendrites of neurons, unlike exosomes carrying CD63 which bind to both neurons and glial cells. Thus, neuroblastoma cells secrete distinct populations of exosomes carrying different cargoes and targeting specific cell types. APP-carrying exosomes can be endocytosed by receiving cells, allowing the processing of APP acquired by exosomes to give rise to the APP intracellular domain (AICD). Thus, our results show for the first time that neuronal exosomes may indeed act as vehicles for the intercellular transport of APP and its catabolites.


Subject(s)
Amyloid beta-Protein Precursor/metabolism , Endocytosis , Exosomes/metabolism , Neurons/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/chemistry , Animals , Brain/metabolism , Brain/pathology , Cells, Cultured , Embryo, Mammalian , Endocytosis/physiology , Exosomes/pathology , Female , Humans , Neurons/pathology , Plaque, Amyloid/metabolism , Plaque, Amyloid/pathology , Pregnancy , Protein Transport , Rats
3.
Semin Cell Dev Biol ; 74: 40-49, 2018 02.
Article in English | MEDLINE | ID: mdl-28811263

ABSTRACT

The endosomal sorting complex required for transport (ESCRT) is made of subcomplexes (ESCRT 0-III), crucial to membrane remodelling at endosomes, nuclear envelope and cell surface. ESCRT-III shapes membranes and in most cases cooperates with the ATPase VPS4 to mediate fission of membrane necks from the inside. The first ESCRT complexes mainly serve to catalyse the formation of ESCRT-III but can be bypassed by accessory proteins like the Alg-2 interacting protein-X (ALIX). In the nervous system, ALIX/ESCRT controls the survival of embryonic neural progenitors and later on the outgrowth and pruning of axons and dendrites, all necessary steps to establish a functional brain. In the adult brain, ESCRTs allow the endosomal turn over of synaptic vesicle proteins while stable ESCRT complexes might serve as scaffolds for the postsynaptic parts. The necessity of ESCRT for the harmonious function of the brain has its pathological counterpart, the mutations in CHMP2B of ESCRT-III giving rise to several neurodegenerative diseases.


Subject(s)
Endosomal Sorting Complexes Required for Transport/metabolism , Nervous System/metabolism , Animals , Biological Transport , Humans
4.
Dev Cell ; 43(6): 716-730.e7, 2017 12 18.
Article in English | MEDLINE | ID: mdl-29257951

ABSTRACT

Autophagy and autophagy-related genes (Atg) have been attributed prominent roles in tumorigenesis, tumor growth, and metastasis. Extracellular vesicles called exosomes are also implicated in cancer metastasis. Here, we demonstrate that exosome production is strongly reduced in cells lacking Atg5 and Atg16L1, but this is independent of Atg7 and canonical autophagy. Atg5 specifically decreases acidification of late endosomes where exosomes are produced, disrupting the acidifying V1V0-ATPase by removing a regulatory component, ATP6V1E1, into exosomes. The effect of Atg5 on exosome production promotes the migration and in vivo metastasis of orthotopic breast cancer cells. These findings uncover mechanisms controlling exosome release and identify means by which autophagy-related genes can contribute to metastasis in autophagy-independent pathways.


Subject(s)
Autophagy-Related Protein 5/metabolism , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Vacuolar Proton-Translocating ATPases/metabolism , Animals , Autophagy/physiology , Autophagy-Related Protein 5/genetics , Autophagy-Related Protein 7/genetics , Autophagy-Related Protein 7/metabolism , Cell Line, Tumor/metabolism , Endosomes/metabolism , Exosomes/metabolism , Female , Humans , Lysosomes/metabolism , Mice , Mice, Inbred BALB C , Neoplasm Metastasis , Vacuolar Proton-Translocating ATPases/genetics
5.
Sci Rep ; 7: 44767, 2017 03 21.
Article in English | MEDLINE | ID: mdl-28322231

ABSTRACT

Alix (ALG-2 interacting protein X) drives deformation and fission of endosomal and cell surface membranes and thereby intervenes in diverse biological processes including cell proliferation and apoptosis. Using embryonic fibroblasts of Alix knock-out mice, we recently demonstrated that Alix is required for clathrin-independent endocytosis. Here we show that mice lacking Alix suffer from severe reduction in the volume of the brain which affects equally all regions examined. The cerebral cortex of adult animals shows normal layering but is reduced in both medio-lateral length and thickness. Alix controls brain size by regulating its expansion during two distinct developmental stages. Indeed, embryonic surface expansion of the Alix ko cortex is reduced because of the loss of neural progenitors during a transient phase of apoptosis occurring between E11.5 and E12.5. Subsequent development of the Alix ko cortex occurs normally until birth, when Alix is again required for the post-natal radial expansion of the cortex through its capacity to allow proper neurite outgrowth. The need of Alix for both survival of neural progenitor cells and neurite outgrowth is correlated with its role in clathrin-independent endocytosis in neural progenitors and at growth cones. Thus Alix-dependent, clathrin independent endocytosis is essential for controlling brain size.


Subject(s)
Brain/growth & development , Brain/metabolism , Calcium-Binding Proteins/metabolism , Animals , Animals, Newborn , Apoptosis , Cell Count , Cells, Cultured , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , Dendrites/metabolism , Embryo, Mammalian/metabolism , Endocytosis , Fibroblast Growth Factors/metabolism , Growth Cones/metabolism , Mice, Inbred C57BL , Mice, Knockout , Microcephaly/metabolism , Microcephaly/pathology , Neural Stem Cells/metabolism , Organ Size , Signal Transduction
6.
Methods Mol Biol ; 1545: 129-138, 2017.
Article in English | MEDLINE | ID: mdl-27943211

ABSTRACT

Exosomes are vesicles released by most cells into their environment upon fusion of multivesicular endosomes with the plasma membrane. Exosomes are vesicles of 60-100 nm in diameter, floating in sucrose at a density of ~1.15 g/mL and carrying a number of marker proteins such as Alix, Tsg101, and Flotillin-1. We use dissociated cortical neurons cultured for around two weeks as exosome-releasing cells. In these conditions, neurons make mature synapses and form networks that can be activated by physiological stimuli. Here, we describe methods to culture differentiated cortical neurons, induce exosome release by increasing glutamatergic synapse activity, and purify exosomes by differential centrifugations followed by density separation using sucrose gradients. These protocols allow purification of neuronal exosomes released within minutes of activation of glutamatergic synapses.


Subject(s)
Cell Fractionation , Cerebral Cortex/cytology , Exosomes/metabolism , Neurons/metabolism , Synaptic Vesicles/metabolism , Animals , Cell Fractionation/methods , Cells, Cultured , Glutamates/metabolism , Rats
7.
J Extracell Vesicles ; 3: 24722, 2014.
Article in English | MEDLINE | ID: mdl-25398455

ABSTRACT

Exosomes are nano-sized vesicles of endocytic origin released into the extracellular space upon fusion of multivesicular bodies with the plasma membrane. Exosomes represent a novel mechanism of cell-cell communication allowing direct transfer of proteins, lipids and RNAs. In the nervous system, both glial and neuronal cells secrete exosomes in a way regulated by glutamate. It has been hypothesized that exosomes can be used for interneuronal communication implying that neuronal exosomes should bind to other neurons with some kind of specificity. Here, dissociated hippocampal cells were used to compare the specificity of binding of exosomes secreted by neuroblastoma cells to that of exosomes secreted by cortical neurons. We found that exosomes from neuroblastoma cells bind indiscriminately to neurons and glial cells and could be endocytosed preferentially by glial cells. In contrast, exosomes secreted from stimulated cortical neurons bound to and were endocytosed only by neurons. Thus, our results demonstrate for the first time that exosomes released upon synaptic activation do not bind to glial cells but selectively to other neurons suggesting that they can underlie a novel aspect of interneuronal communication.

8.
Mol Cell Neurosci ; 46(2): 409-18, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21111824

ABSTRACT

Exosomes are microvesicles released into the extracellular medium upon fusion to the plasma membrane of endosomal intermediates called multivesicular bodies. They represent ways for discarding proteins and metabolites and also for intercellular transfer of proteins and RNAs. In the nervous system, it has been hypothesized that exosomes might be involved in the normal physiology of the synapse and possibly allow the trans-synaptic propagation of pathogenic proteins throughout the tissue. As a first step to validate this concept, we used biochemical and morphological approaches to demonstrate that mature cortical neurons in culture do indeed secrete exosomes. Using electron microscopy, we observed exosomes being released from somato-dendritic compartments. The endosomal origin of exosomes was demonstrated by showing that the C-terminal domain of tetanus toxin specifically endocytosed by neurons and accumulating inside multivesicular bodies, is released in the extracellular medium in association with exosomes. Finally, we found that exosomal release is modulated by glutamatergic synaptic activity, suggesting that this process might be part of normal synaptic physiology. Thus, our study paves the way towards the demonstration that exosomes take part in the physiology of the normal and pathological nervous system.


Subject(s)
Exosomes/metabolism , Neurons/metabolism , Synapses/metabolism , Animals , Blotting, Western , Cell Differentiation , Cells, Cultured , Exosomes/ultrastructure , Glutamine/metabolism , Microscopy, Electron, Transmission , Neurons/ultrastructure , Rats , Synapses/ultrastructure
9.
J Neurosci ; 26(2): 542-9, 2006 Jan 11.
Article in English | MEDLINE | ID: mdl-16407552

ABSTRACT

Alix/apoptosis-linked gene-2 (ALG-2)-interacting protein X is an adaptor protein involved in the regulation of the endolysosomal system through binding to endophilins and to endosomal sorting complexes required for transport (ESCRT) proteins, TSG101 and CHMP4b. It was first characterized as an interactor of ALG-2, a calcium-binding protein necessary for cell death, and several observations suggest a role for Alix in controlling cell death. We used electroporation in the chick embryo to test whether overexpressed wild-type or mutated Alix proteins influence cell death in vivo. We show that Alix overexpression is sufficient to induce cell death of neuroepithelial cells. This effect is strictly dependent on its capacity to bind to ALG-2. On the other hand, expression of Alix mutants lacking the ALG-2 or the CHMP4b binding sites prevents early programmed cell death in cervical motoneurons at day 4.5 of chick embryo development. This protection afforded by Alix mutants was abolished after deletion of the TSG101, but not of the endophilin, binding sites. Our results suggest that the interaction of the ALG-2/Alix complex with ESCRT proteins is necessary for naturally occurring death of motoneurons. Therefore, Alix represents a molecular link between the endolysosomal system and the cell death machinery.


Subject(s)
Adaptor Proteins, Vesicular Transport/physiology , Anterior Horn Cells/cytology , Apoptosis/physiology , Calcium-Binding Proteins/physiology , Carrier Proteins/physiology , Endosomes/metabolism , Neuroepithelial Cells/cytology , Animals , Anterior Horn Cells/metabolism , Apoptosis Regulatory Proteins/immunology , Binding Sites , Biological Transport , Calcium-Binding Proteins/chemistry , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/immunology , Carrier Proteins/chemistry , Carrier Proteins/genetics , Cell Division , Chick Embryo , Cricetinae , DNA-Binding Proteins/physiology , Electroporation , Endosomal Sorting Complexes Required for Transport , Mice , Neuroepithelial Cells/metabolism , Protein Binding , Protein Structure, Tertiary , Sequence Deletion , Spinal Cord/cytology , Spinal Cord/embryology , Transcription Factors/physiology , Transfection , Vesicular Transport Proteins/physiology
10.
Neurosci Lett ; 368(3): 309-13, 2004 Sep 30.
Article in English | MEDLINE | ID: mdl-15364417

ABSTRACT

Chronic intoxication by 3-nitropropionic acid in the Lewis rat reproduces many features reminiscent of Huntington's disease including behavioural alterations and cortico-striatal degeneration. In particular, in this model, striatal degeneration is accompanied by calpain activation as found in the human disease. The present study was undertaken to determine whether the expression of Alix (apoptosis linked gene-2 interacting protein), a widespread protein involved in neuronal death, would be modified in the striatum and cortex of 3NP-treated rats. The results clearly show that Alix immunoreactivity is increased in the neuronal cell bodies of the lateral striatum, where degeneration is massive. The medial striatum and the cortex that lack neurodegeneration remain only weakly labelled. This is further evidence suggesting an involvement of Alix in the events driving neuronal death.


Subject(s)
Apoptosis , Calcium-Binding Proteins/metabolism , Carrier Proteins/metabolism , Corpus Striatum/metabolism , Corpus Striatum/pathology , Nerve Degeneration/metabolism , Nerve Degeneration/pathology , Propionates/administration & dosage , Animals , Apoptosis/genetics , Calcium-Binding Proteins/biosynthesis , Carrier Proteins/biosynthesis , Corpus Striatum/chemistry , Immunohistochemistry , Male , Nerve Degeneration/chemically induced , Nitro Compounds , Rats , Rats, Inbred Lew
11.
Gene Expr Patterns ; 3(2): 139-42, 2003 May.
Article in English | MEDLINE | ID: mdl-12711539

ABSTRACT

Alix is a cytoplasmic protein involved in both programmed cell death and endocytosis (Oncogene 21 (2002) 6801). These activities of Alix may be related to its demonstrated capacity to bind ALG-2 (Apoptosis Linked Gene-2), CIN85/SETA and endophilins (J. Biol. Chem. 275 (2000) 19275; Science 271 (1996) 521; Cell Death Differ. 6 (1999) 124; J. Biol. Chem. 274 (1999) 1533; J. Biol. Chem. 28 (2002) 29108). Here we report for the first time the developmental expression pattern of Alix protein during chick development. We show by immunochemistry that the protein appears first in the ventral part of the rostral neural tube (stage 16 HH) and then in more caudal parts, thereby following the rostro-caudal maturation of the neural tube. Later on, the protein is found in the distal part of axons as well as in the dermomyotome where it becomes restricted to the muscle progenitors. This first demonstration of Alix modulation during development suggests a role for the protein in early phases of motoneuron and muscle growth and differentiation.


Subject(s)
Calcium-Binding Proteins/genetics , Carrier Proteins/genetics , Motor Neurons/metabolism , Spinal Cord/embryology , Animals , Calcium-Binding Proteins/biosynthesis , Carrier Proteins/biosynthesis , Chick Embryo , Ganglia, Spinal/embryology , Ganglia, Spinal/metabolism , Muscles/embryology , Muscles/metabolism , Spinal Cord/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...