Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Bioorg Med Chem Lett ; 34: 127761, 2021 02 15.
Article in English | MEDLINE | ID: mdl-33359607

ABSTRACT

A small series of novel isoflavone/benzo-δ-sultam hybrids was synthesised and evaluated as potential anti-inflammatory and neuroprotective drugs in LPS-activated BV2 microglia. The benzo-δ-sultam core was constructed in a two-step reaction by coupling 2-halobenzenesulfonamide derivatives with terminal alkynes, followed by a 6-endo-dig cyclisation. The synthesised compounds, including precursors and hybrids, were tested for their ability to inhibit NO and TNF-α production in LPS-stimulated BV2 microglial cells, and the results are promising. The most potent hybrid reduces the NO production to 41%, and the TNF-α to 34% at 20 µM final concentration in the well.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Isoflavones/pharmacology , Microglia/drug effects , Nitric Oxide/antagonists & inhibitors , Sulfonamides/pharmacology , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Cell Line , Dose-Response Relationship, Drug , Isoflavones/chemistry , Lipopolysaccharides/antagonists & inhibitors , Lipopolysaccharides/pharmacology , Mice , Microglia/metabolism , Molecular Structure , Nitric Oxide/biosynthesis , Structure-Activity Relationship , Sulfonamides/chemistry , Tumor Necrosis Factor-alpha/biosynthesis
2.
J Pharm Anal ; 10(1): 78-85, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32123602

ABSTRACT

An understanding of the thermodynamics of the complexation process utilized in sustaining drug release in clay matrices is of great importance. Several characterisation techniques as well as isothermal calorimetry were utilized in investigating the adsorption process of a model cationic drug (diltiazem hydrochloride, DIL) onto a pharmaceutical clay system (magnesium aluminium silicate, MAS). X-ray powder diffraction (XRPD), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and optical microscopy confirmed the successful formation of the DIL-MAS complexes. Drug quantification from the complexes demonstrated variable behaviour in the differing media used with DIL degrading to desacetyl diltiazem hydrochloride (DC-DIL) in the 2 M HCl media. Here also, the authors report for the first time two binding processes that occurred for DIL and MAS. A competitor binding model was thus proposed and the thermodynamics obtained suggested their binding processes to be enthalpy driven and entropically unfavourable. This information is of great importance for a formulator as care and consideration should be given with appropriate media selection as well as the nature of binding in complexes.

3.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-823984

ABSTRACT

An understanding of the thermodynamics of the complexation process utilized in sustaining drug release in clay matrices is of great importance. Several characterisation techniques as well as isothermal calo-rimetry were utilized in investigating the adsorption process of a model cationic drug (diltiazem hy-drochloride, DIL) onto a pharmaceutical clay system (magnesium aluminium silicate, MAS). X-ray powder diffraction (XRPD), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and optical microscopy confirmed the successful formation of the DIL-MAS complexes. Drug quantification from the complexes demonstrated variable behaviour in the differing media used with DIL degrading to desacetyl diltiazem hydrochloride (DC-DIL) in the 2 M HCl media. Here also, the authors report for the first time two binding processes that occurred for DIL and MAS. A competitor binding model was thus proposed and the thermodynamics obtained suggested their binding processes to be enthalpy driven and entropically unfavourable. This information is of great importance for a formulator as care and consideration should be given with appropriate media selection as well as the nature of binding in complexes.

4.
Int Immunopharmacol ; 77: 105951, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31634788

ABSTRACT

Neuroinflammation is now widely accepted as an important pathophysiological mechanism in neurodegenerative disorders, thus providing a critical target for novel compounds. In this study, 3-O-[(E)-(2-oxo-4-(p-tolyl)but-3-en-1-yl] kaempferol (OTBK) prevented the production of pro-inflammatory mediators TNFα, IL-6, PGE2 and nitrite from BV-2 microglia activated with LPS and IFNγ. These effects were accompanied by reduction in the levels of pro-inflammatory proteins COX-2 and iNOS. Involvement of NF-κB in the anti-inflammatory activity of OTBK was evaluated in experiments showing that the compound prevented phosphorylation, nuclear accumulation and DNA binding of p65 sub-unit induced by stimulation of BV-2 microglia with LPS and IFNγ. Exposure of mouse hippocampal HT22 neurons to conditioned media from LPS + IFNγ-stimulated BV-2 cells resulted in reduced cell viability and generation of cellular reactive oxygen species. Interestingly, conditioned media from LPS/IFNγ-stimulated BV-2 cells which were treated with OTBK did not induce neuronal damage or oxidative stress. OTBK was shown to increase protein levels of phospho-AMPKα, Nrf2 and HO-1 in BV-2 microglia. It was further revealed that OTBK treatment increased Nrf2 DNA binding in BV-2 microglia. The actions of the compound on AMPKα and Nrf2 were shown to contribute to its anti-inflammatory activity as demonstrated by diminished activity in the presence of the AMPK antagonist dorsomorphin and Nrf2 inhibitor trigonelline. These results suggest that OTBK inhibits neuroinflammation through mechanisms that may involve activation of AMPKα and Nrf2 in BV-2 microglia.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Anti-Inflammatory Agents/pharmacology , Flavonoids/pharmacology , Heme Oxygenase-1/metabolism , Kaempferols/pharmacology , Membrane Proteins/metabolism , Microglia/drug effects , NF-E2-Related Factor 2/metabolism , Animals , Cell Line , Cytokines/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Mice , Microglia/metabolism , Signal Transduction/drug effects
5.
ACS Omega ; 2(3): 1222-1231, 2017 Mar 31.
Article in English | MEDLINE | ID: mdl-31457499

ABSTRACT

N-Alkylation of 2-azidobenzenesulfonamide with 5-bromopent-1-ene gave an N-pentenyl sulfonamide, which underwent intramolecular aminohydroxylation to give an N-(2-azidoaryl)sulfonyl prolinol, a precursor for the synthesis of a pyrrolobenzothiadiazepine. The attempted N-alkylation of 2-azidobenzamide gave a separable mixture (∼1:1) of a benzotriazinone and a quinazolinone in a 72% combined yield. Other primary alkyl halides (3 examples) gave similar mixtures of benzotriazinones and quinazolinones. Benzylic, allylic, and secondary and tertiary alkyl halides (5 examples) gave only benzotriazinones in moderate yields. The results of mechanistic studies show the likely involvement of nitrene intermediates in the quinazolinone pathway and a second pathway involving a dimethylsulfoxide or dimethylsulfide-mediated conversion of 2-azidobenzamide into benzotriazinones.

6.
J Pharm Anal ; 7(5): 338-342, 2017 Oct.
Article in English | MEDLINE | ID: mdl-29404058

ABSTRACT

This paper addresses the modification of poly(dimethylsiloxane), i.e. PDMS, using plasma surface treatment and a novel application of the membrane created. A set of model compounds were analysed to determine their permeation through PDMS, both with and without plasma treatment. It was found that plasma treatment reduced permeation for the majority of compounds but had little effect on some compounds, such as caffeine, with results indicating that polarity plays an important role in permeation, as is seen in human skin. Most importantly, a direct correlation was observed between plasma-modified permeation data and literature data through calculation of membrane permeability (Kp) values suggesting plasma-modified silicone membrane (PMSM) could be considered as a suitable in vivo replacement to predict clinical skin permeation.

7.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-658031

ABSTRACT

This paper addresses the modification of poly(dimethylsiloxane), i.e. PDMS, using plasma surface treatment and a novel application of the membrane created. A set of model compounds were analysed to determine their permeation through PDMS, both with and without plasma treatment. It was found that plasma treatment reduced permeation for the majority of compounds but had little effect on some compounds, such as caffeine, with results indicating that polarity plays an important role in permeation, as is seen in human skin. Most importantly, a direct correlation was observed between plasma-modified permeation data and literature data through calculation of membrane permeability (Kp) values suggesting plasma-modified silicone membrane (PMSM) could be considered as a suitable in vivo replacement to predict clinical skin permeation.

8.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-660707

ABSTRACT

This paper addresses the modification of poly(dimethylsiloxane), i.e. PDMS, using plasma surface treatment and a novel application of the membrane created. A set of model compounds were analysed to determine their permeation through PDMS, both with and without plasma treatment. It was found that plasma treatment reduced permeation for the majority of compounds but had little effect on some compounds, such as caffeine, with results indicating that polarity plays an important role in permeation, as is seen in human skin. Most importantly, a direct correlation was observed between plasma-modified permeation data and literature data through calculation of membrane permeability (Kp) values suggesting plasma-modified silicone membrane (PMSM) could be considered as a suitable in vivo replacement to predict clinical skin permeation.

9.
Molecules ; 19(10): 16737-56, 2014 Oct 17.
Article in English | MEDLINE | ID: mdl-25329868

ABSTRACT

The coupling of proline- and azetidinone-substituted alkenes to 2-azidobenzoic and 2-azidobenzenesulfonic acid gives precursors that undergo intramolecular azide to alkene 1,3-dipolar cycloadditions to give imine-, triazoline- or aziridine-containing pyrrolo[1,4]benzodiazepines (PBDs), pyrrolo[1,2,5]benzothiadiazepines (PBTDs), and azetidino[1,4]benzodiazepines. The imines and aziridines are formed after loss of nitrogen from a triazoline cycloadduct. The PBDs are a potent class of antitumour antibiotics.


Subject(s)
Alkenes/chemistry , Antibiotics, Antineoplastic/chemical synthesis , Azides/chemistry , Benzodiazepines/chemical synthesis , Pyrroles/chemical synthesis , Cycloaddition Reaction , Molecular Structure
10.
Org Lett ; 14(1): 126-9, 2012 Jan 06.
Article in English | MEDLINE | ID: mdl-22188404

ABSTRACT

Pyridines have been formed by heating azabicyclo[3.2.0]hept-2-en-4-ones in toluene. The generation of a 3-azacyclopentadienone intermediate via a [2 + 2]-cycloreversion is proposed as the key step. A Diels-Alder reaction of a styrene, extrusion of carbon monoxide, and loss of hydrogen then gives the pyridine. The process parallels the well-known synthesis of benzenes from cyclopentadienones. The azabicyclo[3.2.0]hept-2-en-4-ones were synthesized from the reaction between readily available cyclopropenones and 1-azetines, in which the cyclopropenones behave as all-carbon 1,3-dipolar equivalents.


Subject(s)
Alkadienes/chemistry , Azabicyclo Compounds/chemistry , Pyridines/chemical synthesis , Molecular Structure
11.
J Org Chem ; 73(12): 4504-12, 2008 Jun 20.
Article in English | MEDLINE | ID: mdl-18479166

ABSTRACT

Activated sulfonyl derivatives, similar to acyl ones, usually undergo aminolysis with amines in water as nucleophilic attack by the amine is preferred to hydrolysis. However, despite being active sulfonyl derivatives, four-membered heterocyclic sulfonamides, beta-sultams, do not undergo aminolysis in aqueous solution but preferentially react to give hydrolysis products only. The rate of the reaction of beta-sultams in buffered solutions of simple primary amines shows a first-order dependence on amine concentrations attributed to general base-catalyzed hydrolysis by the amine. Even N-benzyl-4,4-dimethyl-3-oxo-beta-sultam, which is both a beta-sultam and a beta-lactam, undergoes hydrolysis at the sulfonyl center rather than aminolysis at either the sulfonyl or acyl center. The solvent kinetic isotope effects (SKIE, k(H(2)O)/k(D(2)O)) for the amine-catalyzed hydrolyses are 1.4 and 1.9 for the hydrolysis of N-benzoyl-beta-sultam and N-benzyl-4,4-dimethyl-3-oxo-beta-sultam, respectively, compatible with a general base-catalyzed mechanism. The amine-catalyzed hydrolysis gives a Bronsted beta value of +0.9 for both N-benzoyl beta-sultam and N-benzyl-4,4-dimethyl-3-oxo-beta-sultam, indicating that the general base amine is almost fully protonated in the transition state. A general base-catalyzed mechanism for hydrolysis rather than nucleophilic attack was also deduced for the reaction of N-benzyl-4,4-dimethyl-3-oxo-beta-sultam with carboxylate anions based on a SKIE of 1.7-1.9 and rate constants which fit the Bronsted plot for amines. In contrast to acyl transfer reactions, those for sulfonyl transfer appear to show an inverse reactivity-selectivity relationshipthe most active compounds being the most selective. The lack of reactivity of beta-sultams toward amine nucleophiles appears to be related to the mechanism of ring opening of beta-sultams with a decreased reactivity toward amines relative to hydroxide ion, probably related to the expulsion of the relatively poor leaving group amide anion.

12.
Org Biomol Chem ; 5(24): 3993-4000, 2007 Dec 21.
Article in English | MEDLINE | ID: mdl-18043805

ABSTRACT

3-oxo-beta-sultams are both beta-sultams and beta-lactams and are a novel class of time-dependent inhibitors of elastase. The inhibition involves formation of a covalent enzyme-inhibitor adduct with transient stability by acylation of the active-site serine resulting from substitution at the carbonyl centre of the 3-oxo-beta-sultam, C-N fission, and expulsion of the sulfonamide. The lead compound, N-benzyl-4,4-dimethyl-3-oxo-beta-sultam 1 is a reasonably potent inhibitor against porcine pancreatic elastase with a second-order rate constant of 768 M(-1) s(-1) at pH 6, but also possesses high chemical reactivity with a half-life for hydrolysis of only 6 mins at the same pH in water. Interestingly, the hydrolysis of 3-oxo-beta-sultams occurs at the sulfonyl centre with S-N fission and expulsion of the amide leaving group, whereas the enzyme reaction occurs at the acyl centre. Increasing selectivity between these two reactive centres was explored by examining the effect of substituents on the reactivity of 3-oxo-beta-sultam towards hydrolysis and enzyme inhibition. The inhibition activity against porcine pancreatic elastase has a much higher sensitivity to substituent variation than does the rate of alkaline hydrolysis. A difference of 2000-fold is observed in the second-order rate constants, k(i), for inhibition whereas there is only a 100-fold difference in the second-order rate constants, k(OH), for alkaline hydrolysis within the series. The higher sensitivity of enzyme inhibition to substituents than that of simple chemical reactivity indicates a significant degree of molecular recognition of the 3-oxo-beta-sultams by the enzyme.


Subject(s)
Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Pancreatic Elastase/antagonists & inhibitors , Sulfonamides/chemical synthesis , Sulfonamides/pharmacology , Acylation , Animals , Enzyme Inhibitors/chemistry , Hydrolysis , Molecular Structure , Pancreatic Elastase/chemistry , Structure-Activity Relationship , Sulfonamides/chemistry , Swine
13.
J Am Chem Soc ; 127(25): 8946-7, 2005 Jun 29.
Article in English | MEDLINE | ID: mdl-15969560

ABSTRACT

beta-Sultams are the sulfonyl analogues of beta-lactams, and 3-oxo-beta-sultams are both beta-lactams and beta-sultams and, therefore, susceptible to nucleophilic attack at either the acyl or the sulfonyl center. They are novel inactivators of serine enzymes. The second-order rate constant for the inactivation of elastase at pH 6 by N-benzyl-4,4-dimethyl-3-oxo-beta-sultam is 768 M-1 s-1, which is 103-fold greater than that with N-benzoyl beta-sultam. However, in contrast to N-acyl beta-sultams, which sulfonylate the active site serine residue to form a sulfonate ester, 3-oxo-beta-sultams inhibit the enzyme by acylation followed by slow deacylation to regenerate the active enzyme.


Subject(s)
Pancreatic Elastase/antagonists & inhibitors , Sulfonamides/chemical synthesis , Sulfonamides/pharmacology , Sulfones/chemical synthesis , Acylation , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Humans , Molecular Structure , Pancreatic Elastase/chemistry , Serine/chemistry , Sulfonamides/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...