Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Protein Sci ; 3(11): 1927-37, 1994 Nov.
Article in English | MEDLINE | ID: mdl-7703839

ABSTRACT

The Tyr corner is a conformation in which a tyrosine (residue "Y") near the beginning or end of an antiparallel beta-strand makes an H bond from its side-chain OH group to the backbone NH and/or CO of residue Y - 3, Y - 4, or Y - 5 in the nearby connection. The most common "classic" case is a delta 4 Tyr corner (more than 40 examples listed), in which the H bond is to residue Y - 4 and the Tyr chi 1 is near -60 degrees. Y - 2 is almost always a glycine, whose left-handed beta or very extended beta conformation helps the backbone curve around the Tyr ring. Residue Y - 3 is in polyproline II conformation (often Pro), and residue Y - 5 is usually a hydrophobic (often Leu) that packs next to the Tyr ring. The consensus sequence, then, is LxPGxY, where the first x (the H-bonding position) is hydrophilic. Residues Y and Y - 2 both form narrow pairs of beta-sheet H-bonds with the neighboring strand. delta 5 Tyr corners have a 1-residue insertion between the Gly and Tyr, forming a beta-bulge. One protein family has a delta 4 corner formed by a His rather than a Tyr, and several examples use Trp in place of Tyr. For almost all these cases, the protein or domain is a Greek key beta-barrel structure, the Tyr corner ends a Greek key connection, and it is well-conserved in related proteins. Most low-twist Greek key beta-barrels have 1 Tyr corner. "Reverse" delta 4 Tyr corners (H bonded to Y + 4) and other variants are described, all less common and less conserved. It seems likely that the more classic Tyr corners (delta 4, delta 5, and delta 3 Tyr, Trp, or His) contribute to the stability of a Greek key connection over a hairpin connection, and also that they may aid in the process of folding up Greek key structures.


Subject(s)
Protein Conformation , Protein Folding , Protein Structure, Secondary , Tyrosine/chemistry , Amino Acid Sequence , Azurin/chemistry , Bacterial Proteins/chemistry , Crystallins/chemistry , Fibronectins/chemistry , Hydrogen Bonding , Immunoglobulins/chemistry , Molecular Sequence Data , Prealbumin/chemistry , Superoxide Dismutase/chemistry , Zinostatin/chemistry
2.
Protein Sci ; 3(3): 476-81, 1994 Mar.
Article in English | MEDLINE | ID: mdl-7912599

ABSTRACT

In order to understand the nature of ATP and L-glutamate binding to glutamine synthetase, and the involvement of Arg 339 and Arg 359 in catalysis, these amino acids were changed to cysteine via site-directed mutagenesis. Individual mutations (Arg-->Cys) at positions 339 and 359 led to a sharp drop in catalytic activity. Additionally, the Km values for the substrates ATP and glutamate were elevated substantially above the values for wild-type (WT) enzyme. Each cysteine was in turn chemically modified to an arginine "analog" to attempt to "rescue" catalytic activity by covalent modification; 2-chloroacetamidine (CA) (producing a thioether) and 2,2'-dithiobis (acetamidine)(DTBA) (producing a disulfide) were the reagents used to effect these chemical transformations. Upon reaction with CA, both R339C and R359C mutants showed a significant regain of catalytic activity (50% and 70% of WT, respectively) and a drop in Km value for ATP close to that for WT enzyme. With DTBA, chemically modified R339C had a greater kcat than WT glutamine synthetase, but chemically modified R359C only regained a small amount of activity. Modification with DTBA was quantitative for each mutant and each modified enzyme had similar Km values for both ATP and glutamate. The high catalytic activity of DTBA-modified R339C could be reversed to that of unmodified R339C by treatment with dithiothreitol, as expected for a modified enzyme containing a disulfide bond. Modification of each cysteine-containing mutant to a lysine "analog" was accomplished using 3-bromopropylamine (BPA).(ABSTRACT TRUNCATED AT 250 WORDS)


Subject(s)
Glutamate-Ammonia Ligase/genetics , Glutamate-Ammonia Ligase/metabolism , Adenosine Triphosphate , Arginine/chemistry , Base Sequence , Binding Sites , DNA, Bacterial/genetics , Enzyme Activation , Escherichia coli/enzymology , Escherichia coli/genetics , Glutamate-Ammonia Ligase/chemistry , Glutamates , Glutamic Acid , Kinetics , Molecular Sequence Data , Mutagenesis, Site-Directed , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...