Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Trans Biomed Eng ; 59(4): 1041-8, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22231147

ABSTRACT

With the technological advancement in body area sensor networks (BASNs), low cost high quality electrocardiographic (ECG) diagnosis systems have become important equipment for healthcare service providers. However, energy consumption and data security with ECG systems in BASNs are still two major challenges to tackle. In this study, we investigate the properties of compressed ECG data for energy saving as an effort to devise a selective encryption mechanism and a two-rate unequal error protection (UEP) scheme. The proposed selective encryption mechanism provides a simple and yet effective security solution for an ECG sensor-based communication platform, where only one percent of data is encrypted without compromising ECG data security. This part of the encrypted data is essential to ECG data quality due to its unequally important contribution to distortion reduction. The two-rate UEP scheme achieves a significant additional energy saving due to its unequal investment of communication energy to the outcomes of the selective encryption, and thus, it maintains a high ECG data transmission quality. Our results show the improvements in communication energy saving of about 40%, and demonstrate a higher transmission quality and security measured in terms of wavelet-based weighted percent root-mean-squared difference.


Subject(s)
Computer Security/instrumentation , Data Compression/methods , Electric Power Supplies , Electrocardiography/instrumentation , Electrocardiography/methods , Signal Processing, Computer-Assisted/instrumentation , Telemetry/instrumentation , Algorithms , Confidentiality , Energy Transfer , Equipment Design , Equipment Failure Analysis , Monitoring, Ambulatory/instrumentation
2.
Environ Pollut ; 158(11): 3439-44, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20667635

ABSTRACT

Groundwater polluted with phenylarsenicals from former warfare agent deposits and their metabolites was investigated with respect to the behavior of relevant arsenic species. Depth profiles at the estimated source and at about 1km downgradient from the source zone were sampled. The source zone is characterized by high total arsenic concentrations up to 16mgL(-1) and is dominated by organic arsenic compounds. The concentrations in the downgradient region are much lower (up to 400µgL(-1)) and show a high proportion of inorganic arsenic species. Iron precipitation seems to be an effective mechanism to prevent dispersion of inorganic arsenic as well as phenylarsonic acid. Reductive conditions were observed in the deeper zone with predominant occurrence of trivalent arsenic species. The inorganic species are in redox equilibrium, whereas the phenylarsenic compounds have variable proportions. Methylphenylarsinic acid was identified in groundwater in traces which indicates microbial degradation activity.


Subject(s)
Arsenic/analysis , Chemical Warfare Agents/analysis , Environmental Monitoring , Water Pollutants, Chemical/analysis , Arsenates/analysis , Arsenates/chemistry , Arsenic/chemistry , Arsenicals/analysis , Arsenicals/chemistry , Arsenites/analysis , Arsenites/chemistry , Chemical Warfare Agents/chemistry , Water Pollutants, Chemical/chemistry
3.
Environ Sci Technol ; 43(18): 6989-95, 2009 Sep 15.
Article in English | MEDLINE | ID: mdl-19806732

ABSTRACT

The extensive production of chemical warfare agents in the 20th century has led to serious contamination of soil and groundwater with phenyl arsenicals at former ammunition depots or warfare agent production sites worldwide. Most phenyl arsenicals are highly toxic for humans. The microbial degradation of phenylarsonic acid (PAA) and diphenylarsinic acid (DPAA) was investigated in microcosms made of anoxic groundwater/sediment mixtures taken from different depths of an anoxic, phenyl arsenical contaminated aquifer in Central Germany. DPAA was not transformed within 91 days incubation time in any of the microcosms. The removal of PAA can be described by a first order kinetics without a lag-phase (rate: 0.037 d(-1)). In sterilized microcosms, PAA concentrations always remained stable, demonstrating that PAA transformation was a biologically mediated process. PAA transformation occurred under sulfate-reducing conditions due to sulfate consumption and production of sulfide. The addition of lactate (1 mM), a typical substrate of sulfate-reducing bacteria, increased the transformation rate of PAA significantly up to 0.134 d(-1). The content of total arsenic was considerably reduced (> 75%). Intermediates of PAA transformation were detected by high performance liquid chromatography-inductively coupled plasma mass spectrometry (HPLC-ICP-MS). Experiments with a pure strain and sterile controls of Desulfovibrio gigas spiked with PAA showed that the elimination process is linked to the presence of sulfide formed through bacterial activity. Phenyl arsenicals were likely immobilized in the sedimentthrough sulfur substitution and a subsequent sulfur bond under the prevailing sulfate reducing condition. The results of this study indicate that PAA can undergo microbiologically mediated transformation in anoxic aquifers, leading to reduced concentrations in groundwater, which indicate a (enhancend) natural attenuation potential.


Subject(s)
Arsenicals/isolation & purification , Soil/analysis , Water Supply , Anaerobiosis , Anions , Arsenic/analysis , Arsenicals/chemistry , Bacteria , Biodegradation, Environmental , Chromatography, High Pressure Liquid , Mass Spectrometry , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...