Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Hum Reprod ; 39(1): 154-176, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37994669

ABSTRACT

STUDY QUESTION: Does trophectoderm biopsy (TEBx) of blastocysts for preimplantation genetic testing in the clinic affect normal placental and embryo development and offspring metabolic outcomes in a mouse model? SUMMARY ANSWER: TEBx impacts placental and embryonic health during early development, with some alterations resolving and others worsening later in development and triggering metabolic changes in adult offspring. WHAT IS KNOWN ALREADY: Previous studies have not assessed the epigenetic and morphological impacts of TEBx either in human populations or in animal models. STUDY DESIGN, SIZE, DURATION: We employed a mouse model to identify the effects of TEBx during IVF. Three groups were assessed: naturally conceived (Naturals), IVF, and IVF + TEBx, at two developmental timepoints: embryonic day (E)12.5 (n = 40/Naturals, n = 36/IVF, and n = 36/IVF + TEBx) and E18.5 (n = 42/Naturals, n = 30/IVF, and n = 35/IVF + TEBx). Additionally, to mimic clinical practice, we assessed a fourth group: IVF + TEBx + Vitrification (Vit) at E12.5 (n = 29) that combines TEBx and vitrification. To assess the effect of TEBx in offspring health, we characterized a 12-week-old cohort (n = 24/Naturals, n = 25/IVF and n = 25/IVF + TEBx). PARTICIPANTS/MATERIALS, SETTING, METHODS: Our mouse model used CF-1 females as egg donors and SJL/B6 males as sperm donors. IVF, TEBx, and vitrification were performed using standardized methods. Placenta morphology was evaluated by hematoxylin-eosin staining, in situ hybridization using Tpbpa as a junctional zone marker and immunohistochemistry using CD34 fetal endothelial cell markers. For molecular analysis of placentas and embryos, DNA methylation was analyzed using pyrosequencing, luminometric methylation assay, and chip array technology. Expression patterns were ascertained by RNA sequencing. Triglycerides, total cholesterol, high-, low-, and very low-density lipoprotein, insulin, and glucose were determined in the 12-week-old cohort using commercially available kits. MAIN RESULTS AND THE ROLE OF CHANCE: We observed that at E12.5, IVF + TEBx had a worse outcome in terms of changes in DNA methylation and differential gene expression in placentas and whole embryos compared with IVF alone and compared with Naturals. These changes were reflected in alterations in placental morphology and blood vessel density. At E18.5, early molecular changes in fetuses were maintained or exacerbated. With respect to placentas, the molecular and morphological changes, although different compared to Naturals, were equivalent to the IVF group, except for changes in blood vessel density, which persisted. Of note is that most differences were sex specific. We conclude that TEBx has more detrimental effects in mid-gestation placental and embryonic tissues, with alterations in embryonic tissues persisting or worsening in later developmental stages compared to IVF alone, and the addition of vitrification after TEBx results in more pronounced and potentially detrimental epigenetic effects: these changes are significantly different compared to Naturals. Finally, we observed that 12-week IVF + TEBx offspring, regardless of sex, showed higher glucose, insulin, triglycerides, lower total cholesterol, and lower high-density lipoprotein compared to IVF and Naturals, with only males having higher body weight compared to IVF and Naturals. Our findings in a mouse model additionally support the need for more studies to assess the impact of new procedures in ART to ensure healthy pregnancies and offspring outcomes. LARGE SCALE DATA: Data reported in this work have been deposited in the NCBI Gene Expression Omnibus under accession number GSE225318. LIMITATIONS, REASONS FOR CAUTION: This study was performed using a mouse model that mimics many clinical IVF procedures and outcomes observed in humans, where studies on early embryos are not possible. WIDER IMPLICATIONS OF THE FINDINGS: This study highlights the importance of assaying new procedures used in ART to assess their impact on placenta and embryo development, and offspring metabolic outcomes. STUDY FUNDING/COMPETING INTEREST(S): This work was funded by a National Centers for Translational Research in Reproduction and Infertility grant P50 HD068157-06A1 (M.S.B., C.C., M.M.), Ruth L. Kirschstein National Service Award Individual Postdoctoral Fellowship F32 HD107914 (E.A.R.-C.) and F32 HD089623 (L.A.V.), and National Institutes of Health Training program in Cell and Molecular Biology T32 GM007229 (C.N.H.). No conflict of interest.


Subject(s)
Insulins , Placenta , Adult , Animals , Pregnancy , Humans , Male , Female , Placenta/metabolism , Semen/metabolism , Blastocyst/metabolism , Fertilization in Vitro , Epigenesis, Genetic , Biopsy , Glucose , Triglycerides , Cholesterol , Insulins/metabolism
2.
PLoS Genet ; 18(5): e1009672, 2022 05.
Article in English | MEDLINE | ID: mdl-35622856

ABSTRACT

In C. elegans, germline ablation leads to long life span and stress resistance. It has been reported that mutations that block oogenesis or an upstream step in germline development confer strong resistance to hypoxia. We demonstrate here that the hypoxia resistance of sterile mutants is dependent on developmental stage and age. In just a 12-hour period, sterile animals transform from hypoxia sensitive L4 larvae into hypoxia resistant adults. Since this transformation occurs in animals with no germline, the physiological programs that determine hypoxia sensitivity in germline mutants occur independently of germline signals and instead rely on signals from somatic tissues. Furthermore, we found two distinct mechanisms of hypoxia resistance in germline deficient animals. First, a DAF-16/FoxO independent mechanism that occurs in all hypoxia resistant sterile adults and, second, a DAF-16/FoxO dependent mechanism that confers an added layer of resistance, or "super-resistance", to animals with no germline as they age past day 1 of adulthood. RNAseq data showed that genes involved in both cytosolic and mitochondrial protein translation are repressed in sterile adults and further repressed only in germline deficient mutants as they age. Importantly, mutation of daf-16 specifically blocked the repression of cytosolic ribosomal protein genes, but not mitochondrial ribosomal protein genes, implicating DAF-16/FoxO mediated repression of cytosolic ribosomal protein genes as a mechanism of hypoxia super-resistance. Consistent with this hypothesis, the hypoxia super-resistance of aging germline deficient adults was also suppressed by dual mutation of ncl-1 and larp-1, two regulators of protein translation and ribosomal protein abundance. These studies provide novel insight into a profound physiological transformation that takes place in germline mutants during development, showing that some of the unique physiological properties of these long-lived animals are derived from developmentally dependent DAF-16/FoxO mediated repression of genes involved in cytosolic protein translation.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/metabolism , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Germ Cells/metabolism , Hypoxia/genetics , Longevity/genetics , Mutation , Ribosomal Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...