Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
One Earth ; 5(1): 98-108, 2022 Jan 21.
Article in English | MEDLINE | ID: mdl-35128392

ABSTRACT

Climate change is transforming coral reefs, threatening supply of essential dietary micronutrients from small-scale fisheries to tropical coastal communities. Yet the nutritional value of reef fisheries and climate impacts on micronutrient availability remain unclear, hindering efforts to sustain food and nutrition security. Here, we measure nutrient content in coral reef fishes in Seychelles and show that reef fish are important sources of selenium and zinc and contain levels of calcium, iron, and omega-3 fatty acids comparable with other animal-source foods. Using experimental fishing, we demonstrate that iron and zinc are enriched in fishes caught on regime-shifted macroalgal habitats, whereas selenium and omega-3 varied among species. We find substantial increases in nutrients available to fisheries over two decades following coral bleaching, particularly for iron and zinc after macroalgal regime shifts. Our findings indicate that, if managed sustainably, coral reef fisheries could remain important micronutrient sources along tropical coastlines despite escalating climate impacts.

2.
Ecol Appl ; 28(1): 191-200, 2018 01.
Article in English | MEDLINE | ID: mdl-29035010

ABSTRACT

Regime shifts between alternative stable ecosystem states are becoming commonplace due to the combined effects of local stressors and global climate change. Alternative states are characterized as substantially different in form and function from pre-disturbance states, disrupting the delivery of ecosystem services and functions. On coral reefs, regime shifts are typically characterized by a change in the benthic composition from coral to macroalgal dominance. Such fundamental shifts in the benthos are anticipated to impact associated fish communities that are reliant on the reef for food and shelter, yet there is limited understanding of how regime shifts propagate through the fish community over time, relative to initial or recovery conditions. This study addresses this knowledge gap using long-term data of coral reef regime shifts and recovery on Seychelles reefs following the 1998 mass bleaching event. It shows how trophic structure of the reef fish community becomes increasingly dissimilar between alternative reef ecosystem states (regime-shifted vs. recovering) with time since disturbance. Regime-shifted reefs developed a concave trophic structure, with increased biomass in base trophic levels as herbivorous species benefitted from increased algal resources. Mid trophic level species, including specialists such as corallivores, declined with loss of coral habitat, while biomass was retained in upper trophic levels by large-bodied, generalist invertivores. Recovering reefs also experienced an initial decline in mid trophic level biomass, but moved toward a bottom-heavy pyramid shape, with a wide range of feeding groups (e.g., planktivores, corallivores, omnivores) represented at mid trophic levels. Given the importance of coral reef fishes in maintaining the ecological function of coral reef ecosystems and their associated fisheries, understanding the effects of regime shifts on these communities is essential to inform decisions that enhance ecological resilience and economic sustainability.


Subject(s)
Coral Reefs , Fishes , Food Chain , Animals , Biomass , Seychelles
3.
Ecol Evol ; 7(8): 2626-2635, 2017 04.
Article in English | MEDLINE | ID: mdl-28428853

ABSTRACT

Diet specificity is likely to be the key predictor of a predator's vulnerability to changing habitat and prey conditions. Understanding the degree to which predatory coral reef fishes adjust or maintain prey choice, in response to declines in coral cover and changes in prey availability, is critical for predicting how they may respond to reef habitat degradation. Here, we use stable isotope analyses to characterize the trophic structure of predator-prey interactions on coral reefs of the Keppel Island Group on the southern Great Barrier Reef, Australia. These reefs, previously typified by exceptionally high coral cover, have recently lost much of their coral cover due to coral bleaching and frequent inundation by sediment-laden, freshwater flood plumes associated with increased rainfall patterns. Long-term monitoring of these reefs demonstrates that, as coral cover declined, there has been a decrease in prey biomass, and a shift in dominant prey species from pelagic plankton-feeding damselfishes to territorial benthic algal-feeding damselfishes, resulting in differences in the principal carbon pathways in the food web. Using isotopes, we tested whether this changing prey availability could be detected in the diet of a mesopredator (coral grouper, Plectropomus maculatus). The δ13C signature in grouper tissue in the Keppel Islands shifted from a more pelagic to a more benthic signal, demonstrating a change in carbon sources aligning with the change in prey availability due to habitat degradation. Grouper with a more benthic carbon signature were also feeding at a lower trophic level, indicating a shortening in food chains. Further, we found a decline in the coral grouper population accompanying a decrease in total available prey biomass. Thus, while the ability to adapt diets could ameliorate the short-term impacts of habitat degradation on mesopredators, long-term effects may negatively impact mesopredator populations and alter the trophic structure of coral reef food webs.

SELECTION OF CITATIONS
SEARCH DETAIL
...