Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 31(17): 27274-27286, 2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37710806

ABSTRACT

We experimentally demonstrate critical coupling in miniature grating-coupled resonators known as cavity-resonant integrated-grating filters (CRIGFs). Using previously proposed asymmetric grating coupler designs for non-linear CRIGFs, and introducing a dedicated variant of a coupled-modes theory model to estimate physical properties out of the measured reflection and transmission characteristics of these resonators, we demonstrate fine control over the in-and out-coupling rate to the resonator while keeping constant both the internal losses and the resonant wavelength. Furthermore, the critical coupling condition is also observed to coincide with the maximum enhancement of the second harmonic generation signal.

2.
Opt Express ; 31(8): 12955-12966, 2023 Apr 10.
Article in English | MEDLINE | ID: mdl-37157444

ABSTRACT

We report an hyperspectral imaging microscopy system based on a spectrally-shaped illumination and its use to offer an enhanced in-situ inspection of a technological process that is critical in Vertical-Cavity Surface-Emitting Laser (VCSEL) manufacturing, the lateral III-V-semiconductor oxidation (AlOx). The implemented illumination source exploits a digital micromirror device (DMD) to arbitrarily tailor its emission spectrum. When combined to an imager, this source is shown to provide an additional ability to detect minute surface reflectance contrasts on any VCSEL or AlOx-based photonic structure and, in turn, to offer improved in-situ inspection of the oxide aperture shapes and dimensions down to the best-achievable optical resolution. The demonstrated technique is very versatile and could be readily extended to the real-time monitoring of oxidation or other semiconductor technological processes as soon as they rely on a real-time yet accurate measurement of spatio-spectral (reflectance) maps.

3.
Opt Express ; 31(26): 43521, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38178445

ABSTRACT

We present an erratum to our publication [Opt. Express30(5), 8174 (2022)10.1364/OE.448893] correcting a numerical value without affecting the results and conclusions of the original publication.

4.
Opt Express ; 30(14): 25390-25399, 2022 Jul 04.
Article in English | MEDLINE | ID: mdl-36237070

ABSTRACT

In this paper, dielectric Cavity-Resonant Integrated-Grating Filters (CRIGFs) are numerically optimized to achieve extremely high-quality factors, by optimizing the cavity in/out-coupling rate and by introducing apodizing mode-matching sections to reduce scattering losses. Q-factors ranging between 0.1 and 50 million are obtained and two different domains are distinguished, as a function of the perturbation parameter which controls the cavity in/out-coupling rate. When the cavity coupling Q-factor is lower than the Q-factor of the uncoupled Fabry-Perot cavity, corresponding to the over-coupling regime, the reflectivity response exhibits a high resonance maximum. On the contrary, in the under-coupling regime the resonant reflectivity maximum is much weaker since the scattering losses of the uncoupled cavity dominate. Between these two domains, the so-called critical coupling condition leads to very strong field enhancement inside the device, reaching up to 104 times the incident field amplitude. This theoretical work paves the way towards the practical implementation of CRIGFs with much higher Q-factors than currently demonstrated, potentially reaching performance on a par with other resonators such as photonic crystal cavities or whispering gallery mode resonators. These results can serve to optimize the design of narrow-band planar grating filters, particularly for application in non-linear optics.

5.
Opt Express ; 30(21): 38789-38803, 2022 Oct 10.
Article in English | MEDLINE | ID: mdl-36258436

ABSTRACT

We report on the design of cavity-resonator integrated grating couplers for second-harmonic generation. The key point is that the base pattern of our grating coupler (GC) is made of two ridges with different widths (bi-atom). Thus, we reach extremely high Q-factors (above 105) with structures whose fabrication is not challenging, since the bi-atom base pattern is close to that of the surrounded distributed Bragg reflectors (DBR). Yet, the parameters of the structure have to be chosen cautiously to reduce the transition losses between each section (GC, DBR). We numerically demonstrate conversion efficiencies η of several tenths per Watt, even doubled when we include a phase-matching grating within the structuration. Such efficiencies are comparable to those obtained with waveguides and nano-resonators.

6.
Opt Express ; 30(5): 8174-8185, 2022 Feb 28.
Article in English | MEDLINE | ID: mdl-35299564

ABSTRACT

We present a fast reconstruction algorithm for hyperspectral images, utilizing a small amount of data without the need for any training. The method is implemented with a dual disperser hyperspectral imager and makes use of spatial-spectral correlations by a so-called separability assumption that assumes that the image is made of regions of homogenous spectra. The reconstruction algorithm is simple and ready-to-use and does not require any prior knowledge of the scene. A simple proof-of-principle experiment is performed, demonstrating that only a small number of acquisitions are required, and the resulting compressed data-cube is reconstructed near instantaneously.

7.
J Opt Soc Am A Opt Image Sci Vis ; 37(12): 1916-1926, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-33362135

ABSTRACT

We present a novel acquisition scheme based on a dual-disperser architecture, which can reconstruct a hyperspectral datacube using many times fewer acquisitions than spectral bands. The reconstruction algorithm follows a quadratic regularization approach, based on the assumption that adjacent pixels in the scene share similar spectra, and, if they do not, this corresponds to an edge that is detectable on the panchromatic image. A digital micro-mirror device applies reconfigurable spectral-spatial filtering to the scene for each acquisition, and the filtering code is optimized considering the physical properties of the system. The algorithm is tested on simple multi-spectral scenes with 110 wavelength bands and is able to accurately reconstruct the hyperspectral datacube using only 10 acquisitions.

8.
Sci Rep ; 6: 38908, 2016 12 20.
Article in English | MEDLINE | ID: mdl-27996014

ABSTRACT

We generate photon pairs in a-Si:H microrings using a CW pump, and find the Kerr coefficient of a-Si:H to be 3.73 ± 0.25 × 10-17m2/W. By measuring the Q factor with coupled power we find that the loss in the a-Si:H micro-rings scales linearly with power, and therefore cannot originate from two photon absorption. Theoretically comparing a-Si:H and c-Si micro-ring pair sources, we show that the high Kerr coefficient of this sample of a-Si:H is best utilized for microrings with Q factors below 103, but that for higher Q factor devices the photon pair rate is greatly suppressed due to the first order loss.

SELECTION OF CITATIONS
SEARCH DETAIL
...