Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Metabolites ; 13(2)2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36837825

ABSTRACT

Perennial ryegrass (Lolium perenne L.), an economically important pasture and turf grass, is commonly infected with asexual Epichloë species endophytes. Endophytes provide enhanced bioprotection by producing alkaloids, and research often focusses on the negative impact on grazing animals. However, alkaloid distribution throughout the plant and their role in biocontrol of insect pests and diseases are less well understood. Additionally, intermediate compounds have not been investigated for their impacts on animal welfare and biological control in pasture-based scenarios. Here, a single liquid chromatography-mass spectrometry (LC-MS) method was used to measure seven alkaloids in different perennial ryegrass tissues infected with SE or NEA12 endophytes. High alkaloid recoveries and a clear plant matrix effect emphasize the importance of using matrix-matched standards for accurate quantitation. The method is sensitive, detecting alkaloids at low concentrations (nanogram levels), which is important for endophyte strains that produce compounds detrimental to livestock. Concentrations were generally highest in seeds, but distribution differed in the shoots/roots: peramine, terpendole E, terpendole C and lolitrem B were higher in shoots, whilst ergovaline, paxilline and epoxy-janthitrem I were more evenly distributed throughout the two tissues. Knowledge of alkaloid distribution may allow for concentrations to be predicted in roots based on concentrations in the shoots, thereby assisting future determinations of resistance to insects, especially subterranean root-feeding pests.

2.
PLoS One ; 17(5): e0268157, 2022.
Article in English | MEDLINE | ID: mdl-35587477

ABSTRACT

Fermentation of pasture grasses and grains in the rumen of dairy cows and other ruminants produces methane as a by-product, wasting energy and contributing to the atmospheric load of greenhouse gasses. Many feeding trials in farmed ruminants have tested the impact of dietary components on feed efficiency, productivity and methane yield (MeY). Such diets remodel the rumen microbiome, altering bacterial, archaeal, fungal and protozoan populations, with an altered fermentation outcome. In dairy cows, some dietary grains can reduce enteric methane production. This is especially true of wheat, in comparison to corn or barley. Using a feeding trial of cows fed rolled wheat, corn or barley grain, in combination with hay and canola, we identified wheat-associated changes in the ruminal microbiome. Ruminal methane production, pH and VFA concentration data together with 16S rRNA gene amplicon sequences were used to compare ruminal bacterial and archaeal populations across diets. Differential abundance analysis of clustered sequences (OTU) identified members of the bacterial families Lachnospiraceae, Acidaminococcaceae, Eubacteriaceae, Prevotellaceae, Selenomonadaceae, Anaerovoracaceae and Fibrobacteraceae having a strong preference for growth in wheat-fed cows. Within the methanogenic archaea, (at >99% 16S rRNA sequence identity) the growth of Methanobrevibacter millerae was favoured by the non-wheat diets, while Methanobrevibacter olleyae was unaffected. From the wheat-preferring bacteria, correlation analysis found OTU strongly linked to reduced MeY, reduced pH and raised propionic acid levels. OTU from the genera Shuttleworthia and Prevotella_7 and especially Selenomonadaceae had high anti-methane correlations. An OTU likely representing (100% sequence identity) the fumarate-reducing, hydrogen-utilising, rumen bacterium Mitsuokella jalaludinii, had an especially high negative correlation coefficient (-0.83) versus MeY and moderate correlation (-0.6) with rumen pH, strongly suggesting much of the MeY suppression is due to reduced hydrogen availablity. Other OTU, representing as yet unknown species from the Selenomonadaceae family and the genera Prevotella_7, Fibrobacter and Syntrophococcus also had high to moderate negative MeY correlations, but low correlation with pH. These latter likely represent bacterial species able to reduce MeY without causing greater ruminal acidity, making them excellent candidates, provided they can be isolated, for development as anti-methane probiotics.


Subject(s)
Methane , Microbiota , Animal Feed/analysis , Animals , Cattle , Diet/veterinary , Female , Fermentation , Humans , Hydrogen/metabolism , Lactation , Methane/metabolism , Milk/metabolism , Prevotella , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism , Rumen/microbiology , Triticum/genetics , Zea mays/genetics
3.
Sci Rep ; 11(1): 19542, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34599239

ABSTRACT

The ergot alkaloid ergotamine is produced by Claviceps purpurea, a parasitic fungus that commonly infects crops and pastures of high agricultural and economic importance. In humans and livestock, symptoms of ergotism include necrosis and gangrene, high blood pressure, heart rate, thermoregulatory dysfunction and hallucinations. However, ergotamine is also used in pharmaceutical applications to treat migraines and stop post-partum hemorrhage. To define its effects, metabolomic profiling of the brain was undertaken to determine pathways perturbed by ergotamine treatment. Metabolomic profiling identified the brainstem and cerebral cortex as regions with greatest variation. In the brainstem, dysregulation of the neurotransmitter epinephrine, and the psychoactive compound 2-arachidonylglycerol was identified. In the cerebral cortex, energy related metabolites isobutyryl-L-carnitine and S-3-oxodecanoyl cysteamine were affected and concentrations of adenylosuccinate, a metabolite associated with mental retardation, were higher. This study demonstrates, for the first time, key metabolomic pathways involved in the behavioural and physiological dysfunction of ergot alkaloid intoxicated animals.


Subject(s)
Central Nervous System/drug effects , Central Nervous System/metabolism , Ergotamine/pharmacology , Metabolome , Metabolomics , Serotonin Receptor Agonists/pharmacology , Animals , Area Under Curve , Computational Biology , Ergotamine/chemistry , Metabolomics/methods , Mice , Molecular Structure , ROC Curve , Serotonin Receptor Agonists/chemistry
4.
Sci Rep ; 10(1): 9714, 2020 06 16.
Article in English | MEDLINE | ID: mdl-32546814

ABSTRACT

The complex ergot alkaloids, ergovaline and ergotamine, cause dysregulation of physiological functions, characterised by vasoconstriction as well as thermoregulatory and cardiovascular effects in grazing livestock. To assess the effect of the mycotoxins, blood pressure and heart rate of male mice were measured, and metabolite profiling undertaken to determine relative abundances of both ergotamine and its metabolic products in body and brain tissue. Ergotamine showed similar cardiovascular effects to ergovaline, causing elevations in blood pressure and reduced heart rate. Bradycardia was preserved at low-levels of ergovaline despite no changes in blood pressure. Ergotamine was identified in kidney, liver and brainstem but not in other regions of the brain, which indicates region-specific effects of the toxin. The structural configuration of two biotransformation products of ergotamine were determined and identified in the liver and kidney, but not the brain. Thus, the dysregulation in respiratory, thermoregulatory, cardiac and vasomotor function, evoked by ergot alkaloids in animals observed in various studies, could be partially explained by dysfunction in the autonomic nervous system, located in the brainstem.


Subject(s)
Ergot Alkaloids/metabolism , Ergot Alkaloids/toxicity , Mycotoxins/toxicity , Animal Feed/analysis , Animals , Blood Pressure/drug effects , Ergot Alkaloids/chemistry , Ergotamine/metabolism , Ergotamine/pharmacology , Ergotamine/toxicity , Ergotamines/metabolism , Ergotamines/pharmacology , Ergotamines/toxicity , Male , Mice , Mice, Inbred C57BL , Mycotoxins/metabolism , Mycotoxins/pharmacology , Toxins, Biological/pharmacology , Vasoconstriction/drug effects
5.
Molecules ; 25(2)2020 Jan 16.
Article in English | MEDLINE | ID: mdl-31963254

ABSTRACT

Lolitrem B is the most potent indole-diterpene mycotoxin produced by Epichloë festucae var. lolii (termed LpTG-1), with severe intoxication cases reported in livestock. To date, there are no in vivo metabolism studies conducted for the mycotoxin. A mouse model assay established for assessing toxicity of indole-diterpenes was used to investigate metabolic products of lolitrem B. Mice were administered lolitrem B at 0.5 and 2.0 mg/kg body weight (b.wt) intraperitoneally before body and brain tissues were collected at 6 h and 24 h post-treatment. Samples were cryoground and subjected to a biphasic or monophasic extraction. The aqueous and lipophilic phases were analysed using liquid chromatography high-resolution mass spectrometry (LC-HRMS); data analysis was performed with Compound Discoverer™ software. A total of 10 novel phase I metabolic products were identified in the lipophilic phase and their distribution in the liver, kidney and various brain regions are described. The biotransformation products of lolitrem B were found to be present in low levels in the brain. Based on structure-activity postulations, six of these may contribute towards the protracted tremors exhibited by lolitrem B-exposed animals.


Subject(s)
Inactivation, Metabolic , Indole Alkaloids/metabolism , Mycotoxins/metabolism , Animals , Chromatography, Liquid , Epichloe/metabolism , Mass Spectrometry , Metabolic Detoxication, Phase I , Metabolic Detoxication, Phase II , Mice , Molecular Structure
6.
Toxins (Basel) ; 11(5)2019 05 27.
Article in English | MEDLINE | ID: mdl-31137882

ABSTRACT

Indole-diterpenes are an important class of chemical compounds which can be unique to different fungal species. The highly complex lolitrem compounds are confined to Epichloë species, whilst penitrem production is confined to Penicillium spp. and Aspergillus spp. These fungal species are often present in association with pasture grasses, and the indole-diterpenes produced may cause toxicity in grazing animals. In this review, we highlight the unique structural variations of indole-diterpenes that are characterised into subgroups, including paspaline, paxilline, shearinines, paspalitrems, terpendoles, penitrems, lolitrems, janthitrems, and sulpinines. A detailed description of the unique biological activities has been documented where even structurally related compounds have displayed unique biological activities. Indole-diterpene production has been reported in two classes of ascomycete fungi, namely Eurotiomycetes (e.g., Aspergillus and Penicillium) and Sordariomycetes (e.g., Claviceps and Epichloë). These compounds all have a common structural core comprised of a cyclic diterpene skeleton derived from geranylgeranyl diphosphate (GGPP) and an indole moiety derived from tryptophan. Structure diversity is generated from the enzymatic conversion of different sites on the basic indole-diterpene structure. This review highlights the wide-ranging biological versatility presented by the indole-diterpene group of compounds and their role in an agricultural and pharmaceutical setting.


Subject(s)
Diterpenes/toxicity , Indoles/toxicity , Mycotoxins/toxicity , Animals , Diterpenes/chemistry , Endophytes , Humans , Indoles/chemistry , Mycotoxins/chemistry , Poaceae/microbiology , Tremor/chemically induced
SELECTION OF CITATIONS
SEARCH DETAIL
...