Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Eur J Med Chem ; 268: 116175, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38377824

ABSTRACT

Microbial secondary metabolites are pivotal for the development of novel drugs. However, conventional culture techniques, have left a vast array of unexpressed biosynthetic gene clusters (BGCs) in microorganisms, hindering the discovery of metabolites with distinct structural features and diverse biological functions. To address this limitation, several innovative strategies have been emerged. The "One Strain Many Compounds" (OSMAC) strategy, which involves altering microbial culture conditions, has proven to be particularly effective in mining numerous novel secondary metabolites for the past few years. Among these, microbial cyclic peptides stand out. These peptides often comprise rare amino acids, unique chemical structures, and remarkable biological function. With the advancement of the OSMAC strategy, a plethora of new cyclic peptides have been identified from diverse microbial genera. This work reviews the progress in mining novel compounds using the OSMAC strategy and the applications of this strategy in discovering 284 microbial cyclic peptides from 63 endophytic strains, aiming to offer insights for the further explorations into novel active cyclic peptides.


Subject(s)
Multigene Family , Peptides, Cyclic , Peptides, Cyclic/pharmacology , Secondary Metabolism/genetics
2.
New Phytol ; 238(4): 1534-1545, 2023 05.
Article in English | MEDLINE | ID: mdl-36843268

ABSTRACT

Peptide asparaginyl ligases (PALs) are useful tools for precision modifications of proteins and live-cell surfaces by ligating peptides after Asn/Asp (Asx). They share high sequence and structural similarity to plant legumains that are generally known as asparaginyl endopeptidases (AEPs), thus making it challenging to identify PALs from AEPs. In this study, we investigate 875 plant species from algae to seed plants with available sequence data in public databases to identify new PALs. We conducted evolutionary trace analysis on 1500 plant legumains, including eight known PALs, to identify key residues that could differentiate ligases and proteases, followed by recombinant expression and functional validation of 16 novel legumains. Previously, we showed that the substrate-binding sequences flanking the catalytic site can strongly influence the enzymatic direction of a legumain and which we named as ligase-activity determinants (LADs). Here, we show that two conserved substrate-binding Gly residues of LADs are critical, but negative determinants for ligase activity. Our results suggest that specific glycine residues are molecular determinants to identify PALs and AEPs as two different legumain subfamilies, accounting for c. 1% and 88%, respectively.


Subject(s)
Fabaceae , Plant Proteins , Plant Proteins/metabolism , Glycine , Cysteine Endopeptidases/metabolism , Plants/metabolism , Ligases/metabolism
3.
J Biol Chem ; 299(3): 102997, 2023 03.
Article in English | MEDLINE | ID: mdl-36764523

ABSTRACT

Plant legumains are Asn/Asp-specific endopeptidases that have diverse functions in plants. Peptide asparaginyl ligases (PALs) are a special legumain subtype that primarily catalyze peptide bond formation rather than hydrolysis. PALs are versatile protein engineering tools but are rarely found in nature. To overcome this limitation, here we describe a two-step method to design and engineer a high-yield and efficient recombinant PAL based on commonly found asparaginyl endopeptidases. We first constructed a consensus sequence derived from 1500 plant legumains to design the evolutionarily stable legumain conLEG that could be produced in E. coli with 20-fold higher yield relative to that for natural legumains. We then applied the ligase-activity determinant hypothesis to exploit conserved residues in PAL substrate-binding pockets and convert conLEG into conPAL1-3. Functional studies showed that conLEG is primarily a hydrolase, whereas conPALs are ligases. Importantly, conPAL3 is a superefficient and broadly active PAL for protein cyclization and ligation.


Subject(s)
Escherichia coli , Plant Proteins , Amino Acid Sequence , Plant Proteins/metabolism , Cyclization , Escherichia coli/genetics , Escherichia coli/metabolism , Plants/metabolism , Peptide Synthases/metabolism , Protein Engineering , Peptides/metabolism , Endopeptidases/metabolism
4.
Plant Cell ; 34(12): 4936-4949, 2022 11 29.
Article in English | MEDLINE | ID: mdl-36099055

ABSTRACT

Peptide ligases are versatile enzymes that can be utilized for precise protein conjugation for bioengineering applications. Hyperactive peptide asparaginyl ligases (PALs), such as butelase-1, belong to a small class of enzymes from cyclotide-producing plants that can perform site-specific, rapid ligation reactions after a target peptide asparagine/aspartic acid (Asx) residue binds to the active site of the ligase. How PALs specifically recognize their polypeptide substrates has remained elusive, especially at the prime binding side of the enzyme. Here we report crystal structures that capture VyPAL2, a catalytically efficient PAL from Viola yedoensis, in an activated state, with and without a bound substrate. The bound structure shows one ligase with the N-terminal polypeptide tail from another ligase molecule trapped at its active site, revealing how Asx inserts in the enzyme's S1 pocket and why a hydrophobic residue is required at the P2' position. Besides illustrating the anchoring role played by P1 and P2' residues, these results uncover a role for the Gatekeeper residue at the surface of the S2 pocket in shifting the nonprime portion of the substrate and, as a result, the activity toward ligation or hydrolysis. These results suggest a picture for proenzyme maturation in the vacuole and will inform the rational design of peptide ligases with tailored specificities.


Subject(s)
Enzyme Precursors , Ligases , Enzyme Precursors/metabolism , Substrate Specificity , Ligases/genetics , Ligases/metabolism , Peptides/metabolism , Proteins
5.
J Biol Chem ; 297(6): 101325, 2021 12.
Article in English | MEDLINE | ID: mdl-34710371

ABSTRACT

Legumains, also known as asparaginyl endopeptidases (AEPs), cleave peptide bonds after Asn/Asp (Asx) residues. In plants, certain legumains also have ligase activity that catalyzes biosynthesis of Asx-containing cyclic peptides. An example is the biosynthesis of MCoTI-I/II, a squash family-derived cyclic trypsin inhibitor, which involves splicing to remove the N-terminal prodomain and then N-to-C-terminal cyclization of the mature domain. To identify plant legumains responsible for the maturation of these cyclic peptides, we have isolated and characterized a legumain involved in splicing, McPAL1, from Momordica cochinchinensis (Cucurbitaceae) seeds. Functional studies show that recombinantly expressed McPAL1 displays a pH-dependent, trimodal enzymatic profile. At pH 4 to 6, McPAL1 selectively catalyzed Asp-ligation and Asn-cleavage, but at pH 6.5 to 8, Asn-ligation predominated. With peptide substrates containing N-terminal Asn and C-terminal Asp, such as is found in precursors of MCoTI-I/II, McPAL1 mediates proteolysis at the Asn site and then ligation at the Asp site at pH 5 to 6. Also, McPAL1 is an unusually stable legumain that is tolerant of heat and high pH. Together, our results support that McPAL1 is a splicing legumain at acidic pH that can mediate biosynthesis of MCoTI-I/II. We purport that the high thermal and pH stability of McPAL1 could have applications for protein engineering.


Subject(s)
Cysteine Endopeptidases/metabolism , Momordica/metabolism , Plant Proteins/metabolism , Amino Acid Sequence , Cyclization , Cyclotides/genetics , Cyclotides/metabolism , Cysteine Endopeptidases/analysis , Cysteine Endopeptidases/genetics , Models, Molecular , Momordica/chemistry , Momordica/genetics , Peptides, Cyclic/genetics , Peptides, Cyclic/metabolism , Plant Proteins/analysis , Plant Proteins/genetics , Protein Engineering , Transcriptome
7.
Theranostics ; 11(12): 5863-5875, 2021.
Article in English | MEDLINE | ID: mdl-33897886

ABSTRACT

Background: Protein theranostics integrate both diagnostic and treatment functions on a single disease-targeting protein. However, the preparation of these multimodal agents remains a major challenge. Ideally, conventional recombinant proteins should be used as starting materials for modification with the desired detection and therapeutic functionalities, but simple chemical strategies that allow the introduction of two different modifications into a protein in a site-specific manner are not currently available. We recently discovered two highly efficient peptide ligases, namely butelase-1 and VyPAL2. Although both ligate at asparaginyl peptide bonds, these two enzymes are bio-orthogonal with distinguishable substrate specificities, which can be exploited to introduce distinct modifications onto a protein. Methods: We quantified substrate specificity differences between butelase-1 and VyPAL2, which provide orthogonality for a tandem ligation method for protein dual modifications. Recombinant proteins or synthetic peptides engineered with the preferred recognition motifs of butelase-1 and VyPAL2 at their respective C- and N-terminal ends could be modified consecutively by the action of the two ligases. Results: Using this method, we modified an EGFR-targeting affibody with a fluorescein tag and a mitochondrion-lytic peptide at its respective N- and C-terminal ends. The dual-labeled protein was found to be a selective bioimaging and cytotoxic agent for EGFR-positive A431 cancer cells. In addition, the method was used to prepare a cyclic form of the affibody conjugated with doxorubicin. Both modified affibodies showed increased cytotoxicity to A431 cells by 10- and 100-fold compared to unconjugated doxorubicin and the free peptide, respectively. Conclusion: Bio-orthogonal tandem ligation using two asparaginyl peptide ligases with differential substrate specificities is a straightforward approach for the preparation of multifunctional protein biologics as potential theranostics.


Subject(s)
Ligases/metabolism , Peptides/metabolism , Cell Line, Tumor , Doxorubicin/metabolism , ErbB Receptors/metabolism , Humans , MCF-7 Cells , Mitochondria/metabolism , Precision Medicine/methods , Protein Engineering/methods , Protein Processing, Post-Translational/physiology , Recombinant Proteins/metabolism , Substrate Specificity
8.
RSC Adv ; 11(37): 23105-23112, 2021 Jun 25.
Article in English | MEDLINE | ID: mdl-35480425

ABSTRACT

Butelase-1, an asparaginyl endopeptidase or legumain, is the prototypical and fastest known Asn/Asp-specific peptide ligase. It is highly useful for engineering and macrocyclization of peptides and proteins. However, certain biochemical properties and applications of naturally occurring and recombinant butelase-1 remain unexplored. Here we report methods to increase the yield of natural and bacterial expressed recombinant butelase-1 and how they can be used to improve the stability and activity of two important industrial enzymes, lipase and phytase, by end-to-end circularization. First, the yield of natural butelase-1 was increased 3-fold to 15 mg kg-1 by determining its highest distribution which is found in young tissues, such as shoots. The yield of recombinantly-produced soluble butelase-1 was improved by promoting cytoplasmic disulfide folding, codon changes, and truncation of the N-terminal pro-domain. Natural and recombinant butelase-1 displayed similar ligase activity, physical stability, and salt tolerance. Furthermore, the processing and glycosylation sites of natural and recombinant butelase-1 were determined by proteomic analysis. Storage conditions for both forms of butelase-1, frozen or lyophilized, were also optimized. Cyclization of lipase and phytase mediated by either soluble or immobilized butelase-1 was highly efficient and simple, and resulted in increased thermal stability and enhanced enzymatic activity. Overall, improved production of butelase-1 can be exploited to improve the biocatalytic efficacy of lipase and phytase by end-to-end cyclization. In turn, ligase-improved enzymes could be a general and environmentally friendly strategy for producing more stable and efficient industrial enzymes.

10.
J Org Chem ; 85(3): 1504-1512, 2020 02 07.
Article in English | MEDLINE | ID: mdl-31875402

ABSTRACT

The recently discovered peptide asparaginyl ligases (PALs) from cyclotide-producing plants are efficient and versatile tools for protein and peptide engineering. Here, we report immobilization of two glycosylated PALs, butelase-1 and VyPAL2, using three different attachment methods and their applications for peptide engineering. We compared immobilization indirectly via noncovalent affinity capture using NeutrAvidin or concanavalin A agarose beads or directly via covalent coupling of free amines on the enzyme surface with the N-hydroxysuccinimide (NHS) ester attached on agarose beads. The catalytic efficiency of immobilized PALs correlated with the distance between the biocatalysts and the solid supports, and in turn, the mobility of enzymes and the accessibility of substrates. Compared to their soluble counterparts, the site separations of immobilized PALs retain higher activity after prolonged storage and confer reusability for over 100 runs with less than 10% activity loss. We also showed that the cyclization and ligation of peptides and proteins with varying shapes and sizes can be accelerated by providing higher concentration of reusable immobilized PALs. These advantages could be exploited for large-scale industrial applications and nanodevices.


Subject(s)
Peptides , Proteins , Catalysis , Cyclization , Enzymes, Immobilized , Ligases/metabolism
11.
Methods Mol Biol ; 2012: 83-109, 2019.
Article in English | MEDLINE | ID: mdl-31161505

ABSTRACT

Structurally, butelase 1 is a cysteine protease of the asparaginyl endoprotease (AEP) family, but functionally, it displays intense Asn/Asp-specific (Asx) ligase activity and is virtually devoid of protease activity. Butelase 1 recognizes specifically a C-terminal Asx-containing tripeptide motif, Asx-His-Val, to form an Asx-Xaa peptide bond (Xaa = any amino acid), either intramolecularly or intermolecularly, resulting in cyclic peptides or site-specific modified peptides/proteins, respectively. Our work in the past 4 years has validated that butelase 1 is a potent and versatile tool for peptide and protein modification. Here we describe our protocols using butelase 1 for efficient and site-specific peptide and protein ligation, N-terminal labeling, preparation of thioesters, and bioconjugation of dendrimers. Additionally, we provide an example using butelase 1 for protein cyclization in combination with genetic code expansion in order to incorporate unnatural building blocks.


Subject(s)
Ligases/chemistry , Peptides/chemistry , Proteins/chemistry , Amino Acids/chemistry , Catalysis , Cyclization , Peptides, Cyclic/chemistry , Plant Proteins/chemistry , Protein Engineering , Protein Processing, Post-Translational , Staining and Labeling
12.
Proc Natl Acad Sci U S A ; 116(24): 11737-11746, 2019 06 11.
Article in English | MEDLINE | ID: mdl-31123145

ABSTRACT

Asparaginyl endopeptidases (AEPs) are cysteine proteases which break Asx (Asn/Asp)-Xaa bonds in acidic conditions. Despite sharing a conserved overall structure with AEPs, certain plant enzymes such as butelase 1 act as a peptide asparaginyl ligase (PAL) and catalyze Asx-Xaa bond formation in near-neutral conditions. PALs also serve as macrocyclases in the biosynthesis of cyclic peptides. Here, we address the question of how a PAL can function as a ligase rather than a protease. Based on sequence homology of butelase 1, we identified AEPs and PALs from the cyclic peptide-producing plants Viola yedoensis (Vy) and Viola canadensis (Vc) of the Violaceae family. Using a crystal structure of a PAL obtained at 2.4-Å resolution coupled to mutagenesis studies, we discovered ligase-activity determinants flanking the S1 site, namely LAD1 and LAD2 located around the S2 and S1' sites, respectively, which modulate ligase activity by controlling the accessibility of water or amine nucleophile to the S-ester intermediate. Recombinantly expressed VyPAL1-3, predicted to be PALs, were confirmed to be ligases by functional studies. In addition, mutagenesis studies on VyPAL1-3, VyAEP1, and VcAEP supported our prediction that LAD1 and LAD2 are important for ligase activity. In particular, mutagenesis targeting LAD2 selectively enhanced the ligase activity of VyPAL3 and converted the protease VcAEP into a ligase. The definition of structural determinants required for ligation activity of the asparaginyl ligases presented here will facilitate genomic identification of PALs and engineering of AEPs into PALs.


Subject(s)
Cysteine Endopeptidases/metabolism , Ligases/metabolism , Peptides, Cyclic/metabolism , Plant Proteins/metabolism , Violaceae/metabolism , Mutagenesis/physiology
13.
Org Lett ; 21(7): 2029-2032, 2019 04 05.
Article in English | MEDLINE | ID: mdl-30763108

ABSTRACT

A biomimetic one-step ligase-catalyzed cyclo-oligomerization mediated by butelase 1, an Asn/Asp-specific ligase, is introduced that is time-, concentration-, length-, and sequence-dependent. This reaction yields cyclic mono-, di-, tri-, and tetramers from peptide precursors containing 3-15 amino acids ended with Asn and a His-Val tail. The cyclomonomers were favored when the peptide lengths were >9 amino acids. A turn-forming Pro residue at the P2 position favored the formation of higher-order cyclo-oligomers.


Subject(s)
Amino Acids/chemistry , Depsipeptides/chemistry , Ligases/chemistry , Peptides, Cyclic/chemistry , Amino Acids/metabolism , Catalysis , Depsipeptides/metabolism , Ligases/metabolism , Molecular Structure , Peptides, Cyclic/metabolism
14.
Bioconjug Chem ; 29(7): 2170-2175, 2018 07 18.
Article in English | MEDLINE | ID: mdl-29870654

ABSTRACT

Backbone-cyclic proteins are of great scientific and therapeutic interest owing to their higher stability over their linear counterparts. Modification of such cyclic proteins at a selected site would further enhance their versatility. Here we report a chemoenzymatic strategy to engineer site-selectively modified cyclic proteins by combining butelase-mediated macrocyclization with the genetic code expansion methodology. Using this strategy, we prepared a cyclic protein which was modified with biotin or a cell-penetrating peptide at a genetically incorporated noncanonical amino acid, making the cyclization-stabilized protein further amenable for site-specific immobilization and intracellular delivery. Our results point to a new avenue to engineering novel cyclic proteins with improved physicochemical and pharmacological properties for potential applications in biotechnology and medicine.


Subject(s)
Cell Membrane Permeability , Cell-Penetrating Peptides/genetics , Peptides, Cyclic/metabolism , Protein Engineering/methods , Amino Acids/metabolism , Biotin , Cyclization , Genetic Code , Peptides, Cyclic/genetics
15.
Methods Mol Biol ; 1719: 379-393, 2018.
Article in English | MEDLINE | ID: mdl-29476526

ABSTRACT

Plant cysteine-rich peptides (CRPs) constitute a majority of plant-derived peptides with high molecular diversity. This protocol describes a rapid and efficient peptidomic approach to identify a whole spectrum of CRPs in a plant extract and decipher their molecular diversity and bioprocessing mechanism. Cyclotides from C. ternatea are used as the model CRPs to demonstrate our methodology. Cyclotides exist naturally in both cyclic and linear forms, although the linear forms (acyclotide) are generally present at much lower concentrations. Both cyclotides and acyclotides require linearization of their backbone prior to fragmentation and sequencing. A novel and practical three-step chemoenzymatic treatment was developed to linearize and distinguish both forms: (1) N-terminal acetylation that pre-labels the acyclotides; (2) conversion of Cys into pseudo-Lys through aziridine-mediated S-alkylation to reduce disulfide bonds and to increase the net charge of peptides; and (3) opening of cyclic backbones by the novel asparaginyl endopeptidase butelase 2 that cleaves at the native bioprocessing site. The treated peptides are subsequently analyzed by liquid chromatography coupled to mass spectrometry using electron transfer dissociation fragmentation and sequences are identified by matching the MS/MS spectra directly with the transcriptomic database.


Subject(s)
Clitoria/metabolism , Cysteine/chemistry , Mass Spectrometry/methods , Peptide Fragments/analysis , Peptide Fragments/metabolism , Plant Proteins/metabolism , Proteomics/methods , Peptide Fragments/genetics , Plant Proteins/genetics , Transcriptome
16.
Angew Chem Int Ed Engl ; 56(27): 7822-7825, 2017 06 26.
Article in English | MEDLINE | ID: mdl-28524544

ABSTRACT

Butelase-mediated ligation (BML) can be used to modify live bacterial cell surfaces with diverse cargo molecules. Surface-displayed butelase recognition motif NHV was first introduced at the C-terminal end of the anchoring protein OmpA on E. coli cells. This then served as a handle of BML for the functionalization of E. coli cell surfaces with fluorescein and biotin tags, a tumor-associated monoglycosylated peptide, and mCherry protein. The cell-surface ligation reaction was achieved at low concentrations of butelase and the labeling substrates. Furthermore, the fluorescein-labeled bacterial cells were used to show the interactions with cultured HeLa cells and with macrophages in live transgenic zebrafish, capturing the latter's powerful phagocytic effect in action. Together these results highlight the usefulness of butelase 1 in live bacterial cell surface engineering for novel applications.


Subject(s)
Escherichia coli/metabolism , Glycopeptides/metabolism , Ligases/metabolism , Plant Proteins/metabolism , Amino Acid Sequence , Animals , Animals, Genetically Modified , Clitoria/enzymology , Escherichia coli/chemistry , Glycopeptides/chemistry , HeLa Cells , Host-Pathogen Interactions , Humans , Lysosomes/chemistry , Lysosomes/metabolism , Macrophages/cytology , Macrophages/metabolism , Microscopy, Confocal , Zebrafish
17.
Curr Pharm Des ; 23(14): 2131-2138, 2017.
Article in English | MEDLINE | ID: mdl-28245769

ABSTRACT

The potent calcium channel blocker ω-conotoxin MVIIA is a linear cystine-knot peptide with multiple basic amino acids at both termini. This work shows that macrocyclization of MVIIA linking two positive-charge terminal clusters as a contiguous segment converts a conotoxin into an antimicrobial peptide. In addition, conversion of disulfide bonds to amino butyric acids improved the antimicrobial activity of the cyclic analogs. Ten macrocyclic analogs, with or without disulfide bonds, were prepared by both Boc and Fmoc chemistry using native chemical ligation. All cyclic analogs were active against selected Gram-positive and Gram-negative bacteria with minimal inhibitory concentrations in a low µM range. In contrast, MVIIA and its linear analog were inactive at concentrations up to 0.5 mM. The cyclic analogs also showed 2 to 3-fold improved chemotactic activity against human monocytes THP-1 compared with MVIIA. Reduction of molecular stability against thermal and acid treatment due to the reduced number of disulfide crosslinks can be partly restored by backbone cyclization. Together, these results show that macrocyclization and side chain modification of a linear conopeptide lead to a gain-of-function, which brings a new perspective in designing and engineering of peptidyl therapeutics.


Subject(s)
Antimicrobial Cationic Peptides/pharmacology , Calcium Channel Blockers/pharmacology , Conotoxins/pharmacology , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Macrocyclic Compounds/pharmacology , Antimicrobial Cationic Peptides/chemical synthesis , Antimicrobial Cationic Peptides/chemistry , Calcium Channel Blockers/chemical synthesis , Calcium Channel Blockers/chemistry , Conotoxins/chemical synthesis , Conotoxins/chemistry , Dose-Response Relationship, Drug , Erythrocytes/drug effects , Erythrocytes/microbiology , Healthy Volunteers , Humans , Macrocyclic Compounds/chemical synthesis , Macrocyclic Compounds/chemistry , Microbial Sensitivity Tests , Molecular Structure , Protein Engineering , Structure-Activity Relationship
18.
Nat Protoc ; 11(10): 1977-1988, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27658013

ABSTRACT

Enzymes that catalyze efficient macrocyclization or site-specific ligation of peptides and proteins can enable tools for drug design and protein engineering. Here we describe a protocol to use butelase 1, a recently discovered peptide ligase, for high-efficiency cyclization and ligation of peptides and proteins ranging in size from 10 to >200 residues. Butelase 1 is the fastest known ligase and is found in pods of the common medicinal plant Clitoria ternatea (also known as butterfly pea). It has a very simple C-terminal-specific recognition motif that requires Asn/Asp (Asx) at the P1 position and a dipeptide His-Val at the P1' and P2' positions. Substrates for butelase-mediated ligation can be prepared by standard Fmoc (9-fluorenylmethyloxycarbonyl) chemistry or recombinant expression with the minimal addition of this tripeptide Asn-His-Val motif at the C terminus. Butelase 1 achieves cyclizations that are 20,000 times faster than those of sortase A, a commonly used enzyme for backbone cyclization. Unlike sortase A, butelase is traceless, and it can be used for the total synthesis of naturally occurring peptides and proteins. Furthermore, butelase 1 is also useful for intermolecular ligations and synthesis of peptide or protein thioesters, which are versatile activated intermediates necessary for and compatible with many chemical ligation methods. The protocol describes steps for isolation and purification of butelase 1 from plant extract using a four-step chromatography procedure, which takes ∼3 d. We then describe steps for intramolecular cyclization, intermolecular ligation and butelase-mediated synthesis of protein thioesters. Butelase reactions are generally completed within minutes and often achieve excellent yields.

19.
Angew Chem Int Ed Engl ; 55(41): 12802-6, 2016 10 04.
Article in English | MEDLINE | ID: mdl-27624217

ABSTRACT

Macrocyclic compounds have received increasing attention in recent years. With their large surface area, they hold promise for inhibiting protein-protein interactions, a chemical space that was thought to be undruggable. Although many chemical methods have been developed for peptide macrocyclization, enzymatic methods have emerged as a promising new economical approach. Thus far, most enzymes have been shown to act on l-peptides; their ability to cyclize d-amino-acid-containing peptides has rarely been documented. Herein we show that macrocycles consisting of d-amino acids, except for the Asn residue at the ligating site, were efficiently synthesized by butelase 1, an Asn/Asp-specific ligase. Furthermore, by using a peptide-library approach, we show that butelase 1 tolerates most of the d-amino acid residues at the P1'' and P2'' positions.


Subject(s)
Amino Acids/chemistry , Anti-Bacterial Agents/chemistry , Macrocyclic Compounds/chemical synthesis , Peptides/chemistry , Amino Acids/pharmacology , Anti-Bacterial Agents/pharmacology , Escherichia coli/drug effects , Macrocyclic Compounds/chemistry , Macrocyclic Compounds/pharmacology , Microbial Sensitivity Tests , Peptides/pharmacology , Staphylococcus aureus/drug effects
20.
J Am Chem Soc ; 138(22): 6968-71, 2016 06 08.
Article in English | MEDLINE | ID: mdl-27206099

ABSTRACT

Circular bacteriocins, ranging from 35 to 70 amino acids, are the largest cyclic peptides produced by lactic acid bacteria to suppress growth of other bacteria. Their end-to-end cyclized backbone that enhances molecular stability is an advantage to survive in pasteurization and cooking processes in food preservation, but becomes a disadvantage and challenge in chemical synthesis. They also contain unusually long and highly hydrophobic segments which pose an additional synthetic challenge. Here we report the total synthesis of the three largest circular bacteriocins, AS-48, uberolysin, and garvicin ML, by an efficient chemoenzymatic strategy. A key feature of our synthetic scheme is the use of an Asn-specific butelase-mediated cyclization of their linear precursors, prepared by microwave stepwise synthesis. Antimicrobial assays showed that the AS-48 linear precursor is inactive at concentrations up to 100 µM, whereas the macrocyclic AS-48 is potently active against pathogenic and drug-resistant bacteria, with minimal inhibitory concentrations in a sub-micromolar range.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Bacteriocins/chemical synthesis , Chemistry Techniques, Synthetic/methods , Clitoria/enzymology , Ligases/chemistry , Peptides, Cyclic/chemical synthesis , Amino Acid Sequence , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Bacteriocins/chemistry , Bacteriocins/pharmacology , Catalysis , Cyclization , Peptides, Cyclic/chemistry , Peptides, Cyclic/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...