Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Microbiol Spectr ; 11(3): e0420422, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37191518

ABSTRACT

To investigate an outbreak of vancomycin-resistant Enterococcus faecium (VREfm) sequence type 78 (ST78) in a large tertiary Australian hospital. A collection of 63 VREfm ST78 isolates, identified during a routine genomic surveillance program, were subjected to genomic epidemiological analysis based on whole-genome sequencing (WGS) data. The population structure was reconstructed using phylogenetic analysis, and a collection of publicly available VREfm ST78 genomes were used to provide global context. Core genome single nucleotide polymorphism (SNP) distances and available clinical metadata were used to characterize outbreak clusters and reconstruct transmission events. In silico genotyping confirmed that all study isolates were vanB-type VREfm carrying virulence characteristics of the hospital-associated E. faecium. Phylogenetic analysis identified two distinct phylogenetic clades, only one of which was responsible for a hospital outbreak. Four outbreak subtypes could be defined with examples of recent transmissions. Inference on transmission trees suggested complex transmission routes with unknown environmental reservoirs mediating the outbreak. WGS-based cluster analysis with publicly available genomes identified closely related Australian ST78 and ST203 isolates, highlighting the capacity for WGS to resolve complex clonal relationships between the VREfm lineages. Whole genome-based analysis has provided a high-resolution description of an outbreak of vanB-type VREfm ST78 in a Queensland hospital. Combined routine genomic surveillance and epidemiological analysis have facilitated better understanding of the local epidemiology of this endemic strain, providing valuable insight for better targeted control of VREfm. IMPORTANCE Vancomycin-resistant Enterococcus faecium (VREfm) is a leading cause of health care-associated infections (HAIs) globally. In Australia, the spread of hospital-adapted VREfm is largely driven by a single clonal group (clonal complex [CC]), CC17, to which the lineage ST78 belongs. While implementing a genomic surveillance program in Queensland, we observed increased incidence of ST78 colonizations and infections among patients. Here, we demonstrate the use of real-time genomic surveillance as a tool to support and enhance infection control (IC) practices. Our results show that real-time whole-genome sequencing (WGS) can efficiently disrupt outbreaks by identifying transmission routes that in turn can be targeted using resource-limited interventions. Additionally, we demonstrate that by placing local outbreaks in a global context, high-risk clones can be identified and targeted prior to them becoming established within clinical environments. Finally, the persistence of these organism within the hospital highlights the need for routine genomic surveillance as a management tool to control VRE transmission.


Subject(s)
Cross Infection , Enterococcus faecium , Gram-Positive Bacterial Infections , Vancomycin-Resistant Enterococci , Humans , Vancomycin , Enterococcus faecium/genetics , Queensland/epidemiology , Tertiary Care Centers , Phylogeny , Australia/epidemiology , Vancomycin-Resistant Enterococci/genetics , Genomics , Disease Outbreaks , Cross Infection/epidemiology , Gram-Positive Bacterial Infections/epidemiology
2.
Clin Infect Dis ; 76(3): e1277-e1284, 2023 02 08.
Article in English | MEDLINE | ID: mdl-36056896

ABSTRACT

BACKGROUND: Prospective whole-genome sequencing (WGS)-based surveillance may be the optimal approach to rapidly identify transmission of multi-drug resistant (MDR) bacteria in the healthcare setting. METHODS: We prospectively collected methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant enterococci (VRE), carbapenem-resistant Acinetobacter baumannii (CRAB), extended-spectrum beta-lactamase (ESBL-E), and carbapenemase-producing Enterobacterales (CPE) isolated from blood cultures, sterile sites, or screening specimens across three large tertiary referral hospitals (2 adult, 1 paediatric) in Brisbane, Australia. WGS was used to determine in silico multi-locus sequence typing (MLST) and resistance gene profiling via a bespoke genomic analysis pipeline. Putative transmission events were identified by comparison of core genome single nucleotide polymorphisms (SNPs). Relevant clinical meta-data were combined with genomic analyses via customised automation, collated into hospital-specific reports regularly distributed to infection control teams. RESULTS: Over 4 years (April 2017 to July 2021) 2660 isolates were sequenced. This included MDR gram-negative bacilli (n = 293 CPE, n = 1309 ESBL), MRSA (n = 620), and VRE (n = 433). A total of 379 clinical reports were issued. Core genome SNP data identified that 33% of isolates formed 76 distinct clusters. Of the 76 clusters, 43 were contained to the 3 target hospitals, suggesting ongoing transmission within the clinical environment. The remaining 33 clusters represented possible inter-hospital transmission events or strains circulating in the community. In 1 hospital, proven negligible transmission of non-multi-resistant MRSA enabled changes to infection control policy. CONCLUSIONS: Implementation of routine WGS for MDR pathogens in clinical laboratories is feasible and can enable targeted infection prevention and control interventions.


Subject(s)
Cross Infection , Methicillin-Resistant Staphylococcus aureus , Adult , Humans , Child , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Multilocus Sequence Typing , Cross Infection/epidemiology , Methicillin-Resistant Staphylococcus aureus/genetics , Tertiary Care Centers
3.
Clin Infect Dis ; 73(11): e4531-e4538, 2021 12 06.
Article in English | MEDLINE | ID: mdl-32772111

ABSTRACT

BACKGROUND: Diphtheria is a potentially fatal respiratory disease caused by toxigenic Corynebacterium diphtheriae. Although resistance to erythromycin has been recognized, ß-lactam resistance in toxigenic diphtheria has not been described. Here, we report a case of fatal respiratory diphtheria caused by toxigenic C. diphtheriae resistant to penicillin and all other ß-lactam antibiotics, and describe a novel mechanism of inducible carbapenem resistance associated with the acquisition of a mobile resistance element. METHODS: Long-read whole-genome sequencing was performed using Pacific Biosciences Single Molecule Real-Time sequencing to determine the genome sequence of C. diphtheriae BQ11 and the mechanism of ß-lactam resistance. To investigate the phenotypic inducibility of meropenem resistance, short-read sequencing was performed using an Illumina NextSeq500 sequencer on the strain both with and without exposure to meropenem. RESULTS: BQ11 demonstrated high-level resistance to penicillin (benzylpenicillin minimum inhibitory concentration [MIC] ≥ 256 µg/ml), ß-lactam/ß-lactamase inhibitors and cephalosporins (amoxicillin/clavulanic acid MIC ≥ 256 µg/mL; ceftriaxone MIC ≥ 8 µg/L). Genomic analysis of BQ11 identified acquisition of a novel transposon carrying the penicillin-binding protein (PBP) Pbp2c, responsible for resistance to penicillin and cephalosporins. When strain BQ11 was exposed to meropenem, selective pressure drove amplification of the transposon in a tandem array and led to a corresponding change from a low-level to a high-level meropenem-resistant phenotype. CONCLUSIONS: We have identified a novel mechanism of inducible antibiotic resistance whereby isolates that appear to be carbapenem susceptible on initial testing can develop in vivo resistance to carbapenems with repeated exposure. This phenomenon could have significant implications for the treatment of C. diphtheriae infection, and may lead to clinical failure.


Subject(s)
Corynebacterium diphtheriae , Diphtheria , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Corynebacterium diphtheriae/genetics , Diphtheria/drug therapy , Humans , Lactams/therapeutic use , Microbial Sensitivity Tests , Penicillins/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...