Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 14(2): 2501-2509, 2022 Jan 19.
Article in English | MEDLINE | ID: mdl-34990107

ABSTRACT

Rapid serology platforms are essential in disease pandemics for a variety of applications, including epidemiological surveillance, contact tracing, vaccination monitoring, and primary diagnosis in resource-limited areas. Laboratory-based enzyme-linked immunosorbent assay (ELISA) platforms are inherently multistep processes that require trained personnel and are of relatively limited throughput. As an alternative, agglutination-based systems have been developed; however, they rely on donor red blood cells and are not yet available for high-throughput screening. Column agglutination tests are a mainstay of pretransfusion blood typing and can be performed at a range of scales, ranging from manual through to fully automated testing. Here, we describe a column agglutination test using colored microbeads coated with recombinant SARS-CoV-2 spike protein that agglutinates when incubated with serum samples collected from patients recently infected with SARS-CoV-2. After confirming specific agglutination, we optimized centrifugal force and time to distinguish samples from uninfected vs SARS-CoV-2-infected individuals and then showed concordant results against ELISA for 22 clinical samples, and also a set of serial bleeds from one donor at days 6-10 postinfection. Our study demonstrates the use of a simple, scalable, and rapid diagnostic platform that can be tailored to detect antibodies raised against SARS-CoV-2 and can be easily integrated with established laboratory frameworks worldwide.


Subject(s)
Agglutination Tests/methods , Antibodies, Viral/immunology , COVID-19 Serological Testing/methods , Diagnostic Tests, Routine/methods , Recombinant Proteins/immunology , Spike Glycoprotein, Coronavirus/immunology , Early Diagnosis , Humans , Sensitivity and Specificity
2.
Langmuir ; 37(21): 6578-6587, 2021 06 01.
Article in English | MEDLINE | ID: mdl-34009994

ABSTRACT

Long-term stability and function are key challenges for optical nanosensors operating in complex biological environments. While much focus is rightly placed on issues related to specificity, sensitivity, reversibility, and response time, many nanosensors are not capable of transducing accurate results over prolonged time periods. Sensors could fail over time due to the degradation of scaffold material, degradation of signaling dyes and components, or a combination of both. It is critical to investigate how such degradative processes affect sensor output, as the consequences could be severe. Herein, we used fluorescent core-shell organosilica pH nanosensors as a model system, incubating them in a range of common aqueous solutions over time at different temperatures, and then searched for changes in fluorescence signal, particle size, and evidence of silica degradation. We found that these ratiometric nanosensors produced stable optical signals after aging for 30 days at 37 °C in standard saline buffers with and without 10% fetal bovine serum, and without any evidence of material degradation. Next, we evaluated their performance as real-time pH nanosensors in bacterial suspension cultures, observing a close agreement with a pH electrode for control nanosensors, yet observing obvious deviations in signal based on the aging conditions. The results show that while the organosilica scaffold does not degrade appreciably over time, careful selection of dyes and further systematic investigations into the effects of salt and protein levels are required to realize long-term stable nanosensors.

SELECTION OF CITATIONS
SEARCH DETAIL
...