Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Assoc Lab Anim Sci ; 63(3): 285-293, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38341188

ABSTRACT

The search for alternatives to live animal sentinels in rodent health monitoring programs is fundamental to the 3Rs (Reduction, Replacement, and Refinement) of animal research. We evaluated the efficacy of a novel battery-operated tumbler device that rotates soiled bedding in direct contact with sample media against the use of exhaust sample media and soiled bedding sentinel (SBS) mice. Four rodent racks were used, each with 3 test cages: a cage with a tumbler device that rotated for 10min twice a week (TUM10), a cage with a tumbler device that rotated for 60min twice a week (TUM60), and a cage housing 2 female Crl:CD1(ICR) mice. Every 2 wk, each test cage received soiled bedding collected from all cages on each respective rack. In addition to soiled bedding, the tumbler device contained various sample collection media: a contact Reemay filter (3mo-cRF) that remained in the tumbler for the duration of the study, a contact Reemay filter (1mo-cRF) that was replaced monthly, adhesive swabs (AS) that were added at every biweekly cage change, and an exhaust Reemay filter located at the exhaust outlet of the cage. All analyses were performed by direct PCR for both sample media in the animal-free methods, and fecal pellet, body swab, and oral swabs were collected from sentinel mice. Out of 16 total pathogens detected, assessment of 1mo-Crf from both TUM10 and TUM60 cages detected 84% and 79% of pathogens, respectively, while SBS samples detected only 47% of pathogens. AS in TUM60 and TUM10 cages detected the fewest pathogens (24% and 13%, respectively). These results indicate that the novel tumbler device is an effective and reliable tool for rodent health monitoring programs and a suitable replacement for live animal sentinels. In this study, 1mo-cRF in TUM10 cages detected the highest number of pathogens.


Subject(s)
Housing, Animal , Animals , Mice , Female , Mice, Inbred ICR , Rodent Diseases/diagnosis , Electric Power Supplies , Sentinel Surveillance/veterinary
2.
J Am Assoc Lab Anim Sci ; 56(1): 32-41, 2017 Jan 01.
Article in English | MEDLINE | ID: mdl-28905712

ABSTRACT

There is no consensus regarding the best practice for detecting murine pinworm infections. Initially, we evaluated 7 fecal concentration methods by using feces containing Aspiculuris tetraptera (AT) eggs (n = 20 samples per method). Sodium nitrate flotation, sodium nitrate centrifugation, Sheather sugar centrifugation, and zinc sulfate centrifugation detected eggs in 100% of samples; zinc sulfate flotation and water sedimentation detected eggs in 90%. All had better detection rates than Sheather sugar flotation (50%). To determine optimal detection methods, Swiss Webster mice were exposed to Syphacia obvelata (SO; n = 60) or AT (n = 60). We compared the following methods at days 0, 30, and 90, beginning 21 or 28 d after SO and AT exposure, respectively: fecal concentration (AT only), anal tape test (SO only), direct examination of intestinal contents (cecum and colon), Swiss roll histology (cecum and colon), and PCR analysis (pooled fur swab and feces). Detection rates for SO-exposed mice were: PCR analysis, 45%; Swiss roll histology, 30%; intestinal content exam, 27%; and tape test, 27%. The SO detection rate for PCR analysis was significantly greater than that for the tape test. Detection rates for AT-exposed mice were: intestinal content exam, 53%; PCR analysis, 33%; fecal flotation, 22%; and Swiss roll histology, 17%. The AT detection rate of PCR analysis combined with intestinal content examination was greater than for PCR analysis only and the AT detection rate of intestinal content examination was greater than for Swiss roll histology. Combining PCR analysis with intestinal content examination detected 100% of infected animals. No single test detected all positive animals. We recommend combining PCR analysis with intestinal content examination for optimal pinworm detection.


Subject(s)
Enterobiasis/veterinary , Enterobius/isolation & purification , Rodent Diseases/parasitology , Animals , Enterobiasis/metabolism , Feces , Female , Laboratory Animal Science , Mice , Rodent Diseases/diagnosis , Specimen Handling
SELECTION OF CITATIONS
SEARCH DETAIL
...