Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Opin Microbiol ; 64: 1-8, 2021 12.
Article in English | MEDLINE | ID: mdl-34492595

ABSTRACT

Since the late 1990's the genome sequences for thousands of species of bacteria have been released into public databases. The release of each new genome sequence typically revealed the presence of tens to hundreds of uncharacterised genes encoding putative membrane proteins and more recently, microbial metagenomics has revealed countless more of these uncharacterised genes. Given the importance of small molecule efflux in bacteria, it is likely that a significant proportion of these genes encode for novel efflux proteins, but the elucidation of these functions is challenging. We used transcriptomics to predict that the function of a gene encoding a hypothetical membrane protein is in efflux-mediated antimicrobial resistance. We subsequently confirmed this function and the likely native substrates of the pump by using detailed biochemical and biophysical analyses. Functional studies of homologs of the protein from other bacterial species determined that the protein is a prototype for a family of multidrug efflux pumps - the Proteobacterial Antimicrobial Compound Efflux (PACE) family. The general functional genomics approach used here, and its expansion to functional metagenomics, will very likely reveal the identities of more efflux pumps and other transport proteins of scientific, clinical and commercial interest in the future.


Subject(s)
Bacterial Proteins , Proteobacteria , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Drug Resistance, Multiple, Bacterial , Genomics , Membrane Transport Proteins/genetics
2.
Elife ; 72018 10 15.
Article in English | MEDLINE | ID: mdl-30320551

ABSTRACT

Substrates of most transport proteins have not been identified, limiting our understanding of their role in physiology and disease. Traditional identification methods use transport assays with radioactive compounds, but they are technically challenging and many compounds are unavailable in radioactive form or are prohibitively expensive, precluding large-scale trials. Here, we present a high-throughput screening method that can identify candidate substrates from libraries of unlabeled compounds. The assay is based on the principle that transport proteins recognize substrates through specific interactions, which lead to enhanced stabilization of the transporter population in thermostability shift assays. Representatives of three different transporter (super)families were tested, which differ in structure as well as transport and ion coupling mechanisms. In each case, the substrates were identified correctly from a large set of chemically related compounds, including stereo-isoforms. In some cases, stabilization by substrate binding was enhanced further by ions, providing testable hypotheses on energy coupling mechanisms.


Subject(s)
Biological Assay , Membrane Transport Proteins/metabolism , Temperature , Adenosine Diphosphate/metabolism , Adenosine Triphosphate/metabolism , Animals , Humans , Ions , Ligands , Mitochondria/metabolism , Protein Stability , Reproducibility of Results , Substrate Specificity , Tetrahymena/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...