Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Cell Dev Biol ; 11: 1274826, 2023.
Article in English | MEDLINE | ID: mdl-37886396

ABSTRACT

Background: Polycarpa mytiligera is the only molecularly characterized solitary ascidian capable of regenerating all organs and tissue types. The cellular basis for regeneration in P. mytiligera is largely unknown, and methods for isolating live cells from this species for functional analyses are unavailable. Results: Here, we developed a method for isolating live cells from P. mytiligera, overcoming major experimental challenges, including the dissociation of its thick body wall and native cellular autofluorescence. We demonstrated the applicability of our approach for tissue dissociation and cell analysis using three flow cytometry platforms, and by using broadly used non-species-specific cell labeling reagents. In addition to live cell isolation, proof-of-concept experiments showed that this approach was compatible with gene expression analysis of RNA extracted from the isolated cells, and with ex vivo analysis of phagocytosis. Conclusion: We presented efficient methods for cell purification from a highly regenerative ascidian, which could be transferable to diversity of non-model marine organisms. The ability to purify live cells will promote future studies of cell function in P. mytiligera regeneration.

2.
Cells ; 11(23)2022 Nov 22.
Article in English | MEDLINE | ID: mdl-36496987

ABSTRACT

Understanding how neurons regenerate following injury remains a central challenge in regenerative medicine. Adult mammals have a very limited ability to regenerate new neurons in the central nervous system (CNS). In contrast, the basal chordate Polycarpa mytiligera can regenerate its entire CNS within seven days of complete removal. Transcriptome sequencing, cellular labeling, and proliferation in vivo essays revealed that CNS regeneration is mediated by a newly formed neural progeny and the activation of neurodevelopmental pathways that are associated with enhanced stem-cell activity. Analyzing the expression of 239 activated pathways enabled a quantitative understanding of gene-set enrichment patterns at key regeneration stages. The molecular and cellular mechanisms controlling the regenerative ability that this study reveals can be used to develop innovative approaches to enhancing neurogenesis in closely-related chordate species, including humans.


Subject(s)
Brain Regeneration , Chordata , Animals , Humans , Neurogenesis/physiology , Central Nervous System/metabolism , Brain , Mammals
3.
Dev Dyn ; 251(12): 1968-1981, 2022 12.
Article in English | MEDLINE | ID: mdl-36001356

ABSTRACT

BACKGROUND: Injury response is key to successful regeneration. Yet, transcriptome analyses of injury response were performed only on a handful of regenerative organisms. Here, we studied the injury response of the solitary ascidian Polycarpa mytiligera, an emerging model system, capable of regenerating any body part. We used the siphon as a model for studying transcriptional changes following injury, and identified genes that were activated in the initial 24 hours post amputation (hpa). RESULTS: Highly conserved genes, such as bone morphogenetic protein-1 (BMP1), growth hormone secretagogue receptor (GHSR) and IL-17, were upregulated by 12 hpa, yet their expression was sustained only in non-regenerating tissue fragments. We optimized fluorescent in situ hybridization, and found that the majority of BMP1+ cells were localized to the rigid tunic that covers the animal. This highlights the importance of this tissue, particularly during injury response. BMP1 was overexpressed following injuries to other body regions, suggesting that it was a part of a common injury-induced program. CONCLUSION: Our study suggests that, initially, specific injury-induced genes were upregulated in P. mytiligera organs, yet, later, a unique transcriptional profile was observed only in regenerating tissues. These findings highlight the importance of studying diverse regenerating and non-regenerating organisms for complete understanding of regeneration.


Subject(s)
Urochordata , Animals , Urochordata/genetics , In Situ Hybridization, Fluorescence , Gene Expression Profiling , Models, Biological , Amputation, Surgical
SELECTION OF CITATIONS
SEARCH DETAIL
...