Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 14(11): 13516-13527, 2022 Mar 23.
Article in English | MEDLINE | ID: mdl-35266703

ABSTRACT

Solution-processed transparent conductive oxides offer the advantages of low-cost, high-throughput fabrication of electronic devices compared to the specific requirements of vacuum deposition techniques. However, adapting the current state of the art to ink deposition calls for optimization of the precursor ink composition and the postdeposition process. Solution processing of indium tin oxide films can be accomplished at reduced temperatures (250-400 °C) by annealing soluble precursor metal salts together with a fuel/oxidizer, causing an exothermic reaction with elevated local temperatures. Following layer-by-layer cycles of deposition and annealing, a postprocessing step is required via heating (300 °C) under a 5% H2 reducing atmosphere. To address the discrepancy between the versatility of ink deposition and the limitations of controlled atmosphere postprocessing, here we investigate the effects of postprocess dipping in aqueous sodium borohydride at room temperature as an alternative, which allows for a completely solution-based process from ink to film. In addition to postprocessing, the solution composition was also optimized by removing the fuel additive and by adjusting the In/Sn content. Indium tin oxide (ITO) films were spin-coated and annealed in air at 250, 300, and 400 °C and characterized by UV/vis spectroscopy to obtain optical transmittance, atomic force microscopy to obtain film thickness and surface morphology, and a Hall effect system for electrical parameters. Additional data from X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) indicate that crystallinity is affected by the reducing environment. Results revealed an order-of-magnitude improvement of the Haacke figure of merit (FOM) from 4.3 × 10-4 Ω-1, 382 Ω/□ sheet resistance (Rs), and 84% transmittance (%T) for the traditional 9:1 In/Sn precursor ink with fuel additive followed by 300 °C of 5% H2-furnace post-treatment compared to that of the optimized fully solution-processed 8.5:1.5 In/Sn ink without fuel followed by an ambient air at 25 °C dipping in aqueous sodium borohydride, leading to 3.0 × 10-3 Ω-1 FOM, 84.5 Ω/□ Rs, and 87%T including the glass substrate.

2.
J Am Chem Soc ; 140(25): 7936-7945, 2018 06 27.
Article in English | MEDLINE | ID: mdl-29916709

ABSTRACT

Recently, it has become clear that a range of nanoparticles can be occluded within single crystals to form nanocomposites. Calcite is a much-studied model, but even in this case we have yet to fully understand the details of the nanoscale interactions at the organic-inorganic interface that lead to occlusion. Here, a series of diblock copolymer nanoparticles with well-defined surface chemistries were visualized interacting with a growing calcite surface using in situ atomic force microscopy. These nanoparticles comprise a poly(benzyl methacrylate) (PBzMA) core-forming block and a non-ionic poly(glycerol monomethacrylate) (Ph-PGMA), a carboxylic acid-tipped poly(glycerol monomethacrylate) (HOOC-PGMA), or an anionic poly(methacrylic acid) (PMAA) stabilizer block. Our results reveal three modes of interaction between the nanoparticles and the calcite surface: (i) attachment followed by detachment, (ii) sticking to and "hovering" over the surface, allowing steps to pass beneath the immobilized nanoparticle, and (iii) incorporation of the nanoparticle by the growing crystals. By analyzing the relative contributions of these three types of interactions as a function of nanoparticle surface chemistry, we show that ∼85% of PMAA85-PBzMA100 nanoparticles either "hover" or become incorporated, compared to ∼50% of the HOOC-PGMA71-PBzMA100 nanoparticles. To explain this difference, we propose a two-state binding mechanism for the anionic PMAA85-PBzMA100 nanoparticles. The "hovering" nanoparticles possess highly extended polyelectrolytic stabilizer chains and such chains must adopt a more "collapsed" conformation prior to successful nanoparticle occlusion. This study provides a conceptual framework for understanding how sterically stabilized nanoparticles interact with growing crystals, and suggests design principles for improving occlusion efficiencies.

3.
MRS Bull ; 40(6): 480-489, 2015 Jun.
Article in English | MEDLINE | ID: mdl-27358507

ABSTRACT

This article addresses recent advances in the application of microscopy techniques to characterize crystallization processes as they relate to biomineralization and bio-inspired materials synthesis. In particular, we focus on studies aimed at revealing the role organic macromolecules and functionalized surfaces play in modulating the mechanisms of nucleation and growth. In nucleation studies, we explore the use of methods such as in situ transmission electron microscopy, atomic force microscopy, and cryogenic electron microscopy to delineate formation pathways, phase stabilization, and the competing effects of free energy and kinetic barriers. In growth studies, emphasis is placed on understanding the interactions of macromolecular constituents with growing crystals and characterization of the internal structures of the resulting composite crystals using techniques such as electron tomography, atom probe tomography, and vibrational spectromicroscopy. Examples are drawn from both biological and bio-inspired synthetic systems.

SELECTION OF CITATIONS
SEARCH DETAIL