Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Pain ; 154(10): 2207-2215, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23831864

ABSTRACT

We have modeled the transition from acute to chronic pain in the rat. In this model (termed hyperalgesic priming) a chronic state develops after a prior inflammatory process or exposure to an inflammatory mediator, in which response to subsequent exposure to prostaglandin E2 (PGE2) is characterized by a protein kinase Cε-dependent marked prolongation of mechanical hyperalgesia. To assess the effect of priming on the function of the nociceptor, we have performed in vitro patch clamp and in vivo single-fiber electrophysiology studies using tumor necrosis factor α to induce priming. In vitro, the only change observed in nociceptors cultured from primed animals was a marked hyperpolarization in resting membrane potential (RMP); prolonged sensitization, measured at 60 minutes, could not be tested in vitro. However, complimentary with behavioral findings, in vivo baseline mechanical nociceptive threshold was significantly elevated compared to controls. Thirty minutes after injection of PGE2 into the peripheral receptive field, both primed and control nociceptors showed enhanced response to mechanical stimulation. However, 60 minutes after PGE2 administration, the response to mechanical stimulation was further increased in primed but not in control nociceptors. Thus, at the level of the primary afferent nociceptor, it is possible to demonstrate both altered function at baseline and prolonged PGE2-induced sensitization. Intrathecal antisense (AS) to Kv7.2, which contributes to RMP in sensory neurons, reversibly prevented the expression of priming in both behavioral and single-fiber electrophysiology experiments, implicating these channels in the expression of hyperalgesic priming.


Subject(s)
Action Potentials/physiology , Hyperalgesia/diagnosis , Hyperalgesia/physiopathology , Animals , Cells, Cultured , Electrophysiological Phenomena/physiology , Gene Knockdown Techniques/methods , Male , Membrane Potentials/physiology , Rats , Rats, Sprague-Dawley
2.
J Pain ; 13(12): 1224-31, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23146406

ABSTRACT

UNLABELLED: While it is generally accepted that women have lower pain thresholds for diverse forms of noxious stimuli, the mechanistic basis for this sexual dimorphism in nociceptive pain remains to be elucidated. We confirmed, in the rat, that females have lower cutaneous mechanical nociceptive thresholds and established a similar sexual dimorphism in muscle. To determine if a peripheral mechanism underlies this sexual dimorphism in pain threshold, we compared biophysical properties of cultured dorsal root ganglion (DRG) neurons that innervated the gastrocnemius muscle in female and male rats. DRG neurons from female rats, which innervated the gastrocnemius muscle, had a more hyperpolarized resting membrane potential. To determine if this was associated with a higher mechanical nociceptive threshold, in contradiction to our working hypothesis, we compared the function, in vivo, of nociceptive afferents innervating the gastrocnemius muscle in male and female rats. C-fiber nociceptors innervating muscle in female rats had higher mechanical thresholds than those in males. Other response characteristics of these nociceptors were not significantly different. Thus, both in vitro and in vivo electrophysiology experiments support the idea that lower mechanical nociceptive threshold in females may be due to sexual dimorphism in central nervous system mechanisms, a difference large enough to overcome an opposing difference in peripheral pain mechanisms. PERSPECTIVE: This article unifies in vivo and in vitro electrophysiology with behavioral data examining the differences in mechanical nociceptive threshold between male and female rats. The data provide a novel perspective on the peripheral and behavioral outcomes of noxious mechanical stimulation.


Subject(s)
Membrane Potentials/physiology , Nociceptors/physiology , Pain Measurement/methods , Sex Characteristics , Animals , Cells, Cultured , Female , Ganglia, Spinal/physiology , Male , Rats , Rats, Sprague-Dawley
3.
Channels (Austin) ; 2(1): 4-9, 2008.
Article in English | MEDLINE | ID: mdl-18690052

ABSTRACT

The mechanism of action of gabapentin is still not well understood. It binds to the alpha(2)delta-1 and alpha(2)delta-2 subunits of voltage-gated calcium channels but has little acute effect on calcium currents in several systems. However, our recent results conclusively demonstrated that gabapentin inhibited calcium currents when applied chronically but not acutely, both in heterologous expression systems and in dorsal root ganglion neurons.(1) In that study we only examined a 40-hour time point of incubation with gabapentin, and here we have extended these results to include the effect of up to 6 and 20 hours incubation with gabapentin on calcium channel currents formed from Ca(V)2.1/beta(4)/alpha(2)delta-2 subunits. Gabapentin was significantly effective to inhibit the currents if included for 17-20 hours prior to recording, but it did not produce a significant inhibition if included for 3-6 hours. We previously concluded that gabapentin acts primarily at an intracellular location, requiring uptake into cells. However, this effect is mediated by alpha(2)delta subunits, being prevented by mutations in either alpha(2)delta-1 or alpha(2)delta-2 that abolish gabapentin binding.(1) Furthermore, we also showed that the trafficking of alpha(2)delta-2 and Ca(V)2 channels was disrupted by gabapentin. Here we have also extended that study, to show that the cell-surface expression of Ca(V)2.1 is not reduced by chronic gabapentin if it is co-expressed with alpha(2)delta-2 containing a point mutation (R282A) that prevents gabapentin binding.


Subject(s)
Amines/pharmacology , Calcium Channels/drug effects , Calcium Channels/metabolism , Cyclohexanecarboxylic Acids/pharmacology , gamma-Aminobutyric Acid/pharmacology , Biological Transport/drug effects , Calcium Channel Blockers/pharmacology , Cell Line , Cell Membrane/drug effects , Cell Membrane/metabolism , Cloning, Molecular , Gabapentin , Humans , Kinetics , Microscopy, Confocal , Models, Biological , Muscle, Skeletal/metabolism , Neurons/metabolism , Protein Structure, Tertiary , Time Factors
4.
Proc Natl Acad Sci U S A ; 105(9): 3628-33, 2008 Mar 04.
Article in English | MEDLINE | ID: mdl-18299583

ABSTRACT

The mechanism of action of the antiepileptic and antinociceptive drugs of the gabapentinoid family has remained poorly understood. Gabapentin (GBP) binds to an exofacial epitope of the alpha(2)delta-1 and alpha(2)delta-2 auxiliary subunits of voltage-gated calcium channels, but acute inhibition of calcium currents by GBP is either very minor or absent. We formulated the hypothesis that GBP impairs the ability of alpha(2)delta subunits to enhance voltage-gated Ca(2+)channel plasma membrane density by means of an effect on trafficking. Our results conclusively demonstrate that GBP inhibits calcium currents, mimicking a lack of alpha(2)delta only when applied chronically, but not acutely, both in heterologous expression systems and in dorsal root-ganglion neurons. GBP acts primarily at an intracellular location, requiring uptake, because the effect of chronically applied GBP is blocked by an inhibitor of the system-L neutral amino acid transporters and enhanced by coexpression of a transporter. However, it is mediated by alpha(2)delta subunits, being prevented by mutations in either alpha(2)delta-1 or alpha(2)delta-2 that abolish GBP binding, and is not observed for alpha(2)delta-3, which does not bind GBP. Furthermore, the trafficking of alpha(2)delta-2 and Ca(V)2 channels is disrupted both by GBP and by the mutation in alpha(2)delta-2, which prevents GBP binding, and we find that GBP reduces cell-surface expression of alpha(2)delta-2 and Ca(V)2.1 subunits. Our evidence indicates that GBP may act chronically by displacing an endogenous ligand that is normally a positive modulator of alpha(2)delta subunit function, thereby impairing the trafficking function of the alpha(2)delta subunits to which it binds.


Subject(s)
Amines/pharmacology , Calcium Channels/drug effects , Cyclohexanecarboxylic Acids/pharmacology , gamma-Aminobutyric Acid/pharmacology , Animals , Biological Transport/drug effects , Calcium Channels/metabolism , Gabapentin , Ligands , Mice , Protein Subunits , Rabbits , Rats
5.
Trends Pharmacol Sci ; 28(5): 220-8, 2007 May.
Article in English | MEDLINE | ID: mdl-17403543

ABSTRACT

In this review, we examine what is known about the mechanism of action of the auxiliary alpha2delta subunits of voltage-gated Ca(2+) (Ca(v)) channels. First, to provide some background on the alpha2delta proteins, we discuss the genes encoding these channels, in addition to the topology and predicted structure of the alpha2delta subunits. We then describe the effects of alpha2delta subunits on the biophysical properties of Ca(v) channels and their physiological function. All alpha2delta subunits increase the density at the plasma membrane of Ca(2+) channels activated by high voltage, and we discuss what is known about the mechanism underlying this trafficking. Finally, we consider the link between alpha2delta subunits and disease, both in terms of spontaneous and engineered mouse mutants that show cerebellar ataxia and spike-wave epilepsy, and in terms of neuropathic pain and the mechanism of action of the gabapentinoid drugs - small-molecule ligands of the alpha2delta-1 and alpha2delta-2 subunits.


Subject(s)
Calcium Channels/physiology , Ion Channel Gating , Protein Subunits/physiology , Amines/pharmacology , Animals , Calcium Channel Blockers/pharmacology , Calcium Channels/genetics , Calcium Channels/ultrastructure , Cell Membrane/metabolism , Cerebellar Ataxia/physiopathology , Cyclohexanecarboxylic Acids/pharmacology , Epilepsy/physiopathology , Gabapentin , Humans , Mice , Neuralgia/physiopathology , gamma-Aminobutyric Acid/pharmacology
6.
Proc Natl Acad Sci U S A ; 103(46): 17537-42, 2006 Nov 14.
Article in English | MEDLINE | ID: mdl-17088553

ABSTRACT

Neuropathic pain is a debilitating condition affecting millions of people around the world and is defined as pain that follows a lesion or dysfunction of the nervous system. This type of pain is difficult to treat, but the novel compounds pregabalin (Lyrica) and gabapentin (Neurontin) have proven clinical efficacy. Unlike traditional analgesics such as nonsteroidal antiinflammatory drugs or narcotics, these agents have no frank antiinflammatory actions and no effect on physiological pain. Although extensive preclinical studies have led to a number of suggestions, until recently their mechanism of action has not been clearly defined. Here, we describe studies on the analgesic effects of pregabalin in a mutant mouse containing a single-point mutation within the gene encoding a specific auxiliary subunit protein (alpha2-delta-1) of voltage-dependent calcium channels. The mice demonstrate normal pain phenotypes and typical responses to other analgesic drugs. We show that the mutation leads to a significant reduction in the binding affinity of pregabalin in the brain and spinal cord and the loss of its analgesic efficacy. These studies show conclusively that the analgesic actions of pregabalin are mediated through the alpha2-delta-1 subunit of voltage-gated calcium channels and establish this subunit as a therapeutic target for pain control.


Subject(s)
Analgesics/therapeutic use , Calcium Channels/metabolism , Pain/drug therapy , Pain/metabolism , gamma-Aminobutyric Acid/analogs & derivatives , Amino Acid Sequence , Animals , Arginine/genetics , Arginine/metabolism , Autoradiography , Base Sequence , Calcium Channels/chemistry , Calcium Channels/genetics , Calcium Channels, N-Type/metabolism , Cell Line , Chlorocebus aethiops , Constriction, Pathologic , Female , Formaldehyde , Ion Channel Gating/drug effects , Male , Mice , Mice, Transgenic , Mutation/genetics , Pain/genetics , Pregabalin , Protein Binding , Protein Subunits/chemistry , Protein Subunits/genetics , Protein Subunits/metabolism , Swine , gamma-Aminobutyric Acid/metabolism , gamma-Aminobutyric Acid/therapeutic use
7.
J Neurosci ; 26(34): 8748-57, 2006 Aug 23.
Article in English | MEDLINE | ID: mdl-16928863

ABSTRACT

The accessory alpha2delta subunits of voltage-gated calcium channels are highly glycosylated transmembrane proteins that interact with calcium channel alpha1 subunits to enhance calcium currents. We compared the membrane localization and processing of native cerebellar alpha2delta-2 subunits with alpha2delta-2 stably expressed in tsA-201 cells. We identified that alpha2delta-2 is completely concentrated in cholesterol-rich microdomains (lipid rafts) in cerebellum, in which it substantially colocalizes with the calcium channel alpha1 subunit CaV2.1, although CaV2.1 is also present in the Triton X-100-soluble fraction. In tsA-201 cells, unlike cerebellum, alpha2delta-2 is not completely proteolytically processed into alpha2-2 and delta-2. However, this processing is more complete in the lipid raft fraction of tsA-201 cells, in which alpha2delta-2 also colocalizes with CaV2.1. Cholesterol depletion of intact cells disrupted their lipid rafts and enhanced CaV2.1/alpha2delta-2/beta4 currents. Furthermore, alpha2delta-2 coimmunoprecipitates with lipid raft-associated proteins of the stomatin family. The apparent affinity of alpha2delta-2 for its ligand gabapentin is increased markedly in the cholesterol-rich microdomain fractions, in both cerebellum and the stable alpha2delta-2 cell line. In contrast, alpha2delta-2 containing a point mutation (R282A) has a much lower affinity for gabapentin, and this is not enhanced in the lipid raft fraction. This R282A mutant alpha2delta-2 shows reduced functionality in terms of enhancement of CaV2.1/beta4 calcium currents, suggesting that the integrity of the gabapentin binding site may be important for normal functioning of alpha2delta-2. Together, these results indicate that both alpha2delta-2 and CaV2.1 are normally associated with cholesterol-rich microdomains, and this influences their functionality.


Subject(s)
Calcium Channels, N-Type/metabolism , Calcium Channels/metabolism , Cerebellum/metabolism , Membrane Microdomains/metabolism , Alanine , Amines/antagonists & inhibitors , Amines/metabolism , Amines/pharmacology , Animals , Arginine , Calcium Channel Blockers/pharmacology , Calcium Channels/drug effects , Calcium Channels/genetics , Calcium Channels/physiology , Calcium Channels, N-Type/physiology , Cell Line , Cholesterol/metabolism , Cyclohexanecarboxylic Acids/antagonists & inhibitors , Cyclohexanecarboxylic Acids/metabolism , Cyclohexanecarboxylic Acids/pharmacology , Electric Conductivity , Gabapentin , Immunoprecipitation , Mice , Mutation/physiology , Nerve Tissue Proteins/metabolism , Purkinje Cells/metabolism , Tissue Distribution , gamma-Aminobutyric Acid/metabolism , gamma-Aminobutyric Acid/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...