Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Drug Alcohol Depend ; 129(3): 210-6, 2013 May 01.
Article in English | MEDLINE | ID: mdl-23374566

ABSTRACT

BACKGROUND: There are no approved pharmacotherapies for preventing psychomotor stimulant relapse. The operant reinstatement model has been suggested as a screen for identifying candidate medications. The present study examined if the anxiolytic buspirone could attenuate reinstatement of extinguished responding in Long-Evans rats that previously self-administered intravenous cocaine or methamphetamine. METHODS: Rats were trained in 2-h daily sessions to self-administer 0.5mg/kg cocaine or 0.1mg/kg methamphetamine infusions followed by 12 days of instrumental extinction. Reinstatement was evoked by 17mg/kg i.p. cocaine primes or response-contingent cocaine-paired cues in cocaine-reinforced rats, and by 1mg/kg i.p. methamphetamine primes or response-contingent methamphetamine-paired cues in methamphetamine-reinforced rats. RESULTS: Buspirone (1 and 3mg/kg) significantly (p<0.05) attenuated cocaine cue but not cocaine prime reinstatement. Buspirone (1 and 3mg/kg) also significantly attenuated methamphetamine cue reinstatement. Buspirone (3mg/kg) significantly attenuated methamphetamine prime reinstatement. During all reinstatement tests, 3mg/kg buspirone reduced levels of inactive lever pressing relative to those of vehicle, significantly so during the cocaine cue-induced reinstatement tests. CONCLUSIONS: Given the complexity of buspirone's neuropharmacology consisting of serotonin 5-HT1A receptor partial agonist activity, and dopamine D2, D3 and D4 receptor antagonist effects, it is uncertain which of these activities or their combination is responsible for the present results. Overall, these results suggest that buspirone may reduce the likelihood of relapse to cocaine and methamphetamine use under some conditions, although this speculation must be interpreted with caution given buspirone's similar potency to attenuate inactive-lever responding.


Subject(s)
Behavior, Addictive/drug therapy , Buspirone/therapeutic use , Cocaine/administration & dosage , Methamphetamine/administration & dosage , Reinforcement, Psychology , Animals , Behavior, Addictive/psychology , Conditioning, Operant/drug effects , Conditioning, Operant/physiology , Male , Rats , Rats, Long-Evans , Reaction Time/drug effects , Reaction Time/physiology , Self Administration , Treatment Outcome
2.
Eur J Pharmacol ; 701(1-3): 124-30, 2013 Feb 15.
Article in English | MEDLINE | ID: mdl-23375937

ABSTRACT

Neuroinflammation induced by activated microglia and astrocytes can be elicited by drugs of abuse. Methamphetamine administration activates glial cells and increases proinflammatory cytokine production, and there is recent evidence of a linkage between glial cell activation and drug abuse-related behavior. We have previously reported that ibudilast (AV411; 3-isobutyryl-2-isopropylpyrazolo-[1,5-a]pyridine), which inhibits phosphodiesterase (PDE) and pro-inflammatory activity, blocks reinstatement of methamphetamine-maintained responding in rats, and that ibudilast and AV1013, an amino analog of ibudilast, which has similar glial-attenuating properties but limited PDE activity, attenuate methamphetamine-induced locomotor activity and sensitization in mice. The present study's objective was to determine whether co-administered ibudilast, AV1013, or minocycline, which is a tetracycline derivative that also suppresses methamphetamine-induced glial activation, would attenuate active methamphetamine i.v. self-administration in Long-Evans hooded rats. Rats were initially trained to press a lever for 0.1mg/kg/inf methamphetamine according to a FR1 schedule during 2-h daily sessions. Once stable responding was obtained, twice daily ibudilast (1, 7.5, 10mg/kg), AV1013 (1, 10, 30mg/kg), or once daily minocycline (10, 30, 60mg/kg), or their corresponding vehicles, were given i.p. for three consecutive days during methamphetamine (0.001, 0.03, 0.1mg/kg/inf) self-administration. Ibudilast, AV1013, and minocycline all significantly (p<0.05) reduced responding maintained by 0.03mg/kg/inf methamphetamine that had maintained the highest level of infusions under vehicle conditions. These results suggest that targeting glial cells may provide a novel approach to pharmacotherapy for treating methamphetamineabuse.


Subject(s)
Behavior, Animal/drug effects , Methamphetamine/administration & dosage , Neuroglia/drug effects , Animals , Male , Minocycline/pharmacology , Neuroglia/cytology , Neuroglia/pathology , Pyridines/pharmacology , Rats , Self Administration , Substance-Related Disorders/pathology , Substance-Related Disorders/prevention & control
3.
Neuropsychopharmacology ; 35(3): 665-73, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19890263

ABSTRACT

Beta2 subunit containing nicotinic acetylcholine receptors (beta2(*)nAChRs; asterisk ((*)) denotes assembly with other subunits) are critical for nicotine self-administration and nicotine-associated dopamine (DA) release that supports nicotine reinforcement. The alpha6 subunit assembles with beta2 on DA neurons where alpha6beta2(*)nAChRs regulate nicotine-stimulated DA release at neuron terminals. Using local infusion of alpha-conotoxin MII (alpha-CTX MII), an antagonist with selectivity for alpha6beta2(*)nAChRs, the purpose of these experiments was to determine if alpha6beta2(*)nAChRs in the nucleus accumbens (NAc) shell are required for motivation to self-administer nicotine. Long-Evans rats lever-pressed for 0.03 mg/kg, i.v., nicotine accompanied by light+tone cues (NIC) or for light+tone cues unaccompanied by nicotine (CUEonly). Following extensive training, animals were tested under a progressive ratio (PR) schedule that required an increasing number of lever presses for each nicotine infusion and/or cue delivery. Immediately before each PR session, rats received microinfusions of alpha-CTX MII (0, 1, 5, or 10 pmol per side) into the NAc shell or the overlying anterior cingulate cortex. alpha-CTX MII dose dependently decreased break points and number of infusions earned by NIC rats following infusion into the NAc shell but not the anterior cingulate cortex. Concentrations of alpha-CTX MII that were capable of attenuating nicotine self-administration did not disrupt locomotor activity. There was no effect of infusion on lever pressing in CUEonly animals and NAc infusion alpha-CTX MII did not affect locomotor activity in an open field. These data suggest that alpha6beta2(*)nAChRs in the NAc shell regulate motivational aspects of nicotine reinforcement but not nicotine-associated locomotor activation.


Subject(s)
Conotoxins/pharmacology , Nicotine/administration & dosage , Nucleus Accumbens/physiology , Reaction Time/physiology , Receptors, Nicotinic/physiology , Reinforcement Schedule , Animals , Male , Nucleus Accumbens/drug effects , Nucleus Accumbens/metabolism , Rats , Rats, Long-Evans , Reaction Time/drug effects , Receptors, Nicotinic/metabolism , Self Administration
SELECTION OF CITATIONS
SEARCH DETAIL
...