Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Inf Model ; 54(12): 3362-72, 2014 Dec 22.
Article in English | MEDLINE | ID: mdl-25369428

ABSTRACT

The herpes simplex virus uracil-DNA glycosylase (hsvUNG) enzyme is responsible for the reactivation of the virus from latency and efficient viral replication in nerve tissue. The lack of uracil-DNA glycosylase enzyme in human neurons and the continuous deamination of cytosine create an environment where the presence of viral uracil-DNA glycosylase is a necessity for the proliferation of the virus. A series of 6-(4-alkylanilino)-uracil inhibitors has been developed that selectively and strongly binds to the hsvUNG enzyme while weakly binding to human uracil-DNA glycosylase (hUNG). Here, by using a combination of sequence and structural comparisons between the two enzymes along with free energy of binding computations and principal component analysis of the ligands, we investigate and rationalize the inhibitory effect of the 6-(4-alkylanilino)-uracil series as a function of alkyl chain length on the hsvUNG. The results of these computations corroborate the experimental finding that the inhibitor with an octyl aliphatic chain selectively binds hsvUNG best. More importantly we find that 6-(4-octylanilino)-uracil's selective inhibition of hsvUNG over hUNG is due to the combination of the solution preconfigured bent conformation of that specific chain length and the position of HIS92 (absent in hUNG) just outside hsvUNG's hydrophobic gorge lying adjacent to its uracil binding pocket. The similarities between the uracil binding pockets in hsvUNG and hUNG obfuscate an understanding of the preferential inhibition of the virus enzyme. However, the differences in the enzymes' shallow hydrophobic grooves adjacent to the binding pockets, such as the gorge we identify here, rationalizes 6-(4-alkylanilino)-uracil with an octyl chain length as an excellent pharmacophore template for hsvUNG inhibitor design.


Subject(s)
Enzyme Inhibitors/pharmacology , Herpesvirus 1, Human/enzymology , Models, Molecular , Uracil-DNA Glycosidase/antagonists & inhibitors , Amino Acid Sequence , Binding Sites , DNA/metabolism , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/metabolism , Humans , Ligands , Molecular Sequence Data , Protein Conformation , Substrate Specificity , Thermodynamics , Uracil/chemistry , Uracil/metabolism , Uracil/pharmacology , Uracil-DNA Glycosidase/chemistry , Uracil-DNA Glycosidase/metabolism , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...