Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Elife ; 92020 12 23.
Article in English | MEDLINE | ID: mdl-33355532

ABSTRACT

Small cell carcinoma of the ovary, hypercalcemic type (SCCOHT) is a rare and aggressive form of ovarian cancer. SCCOHT tumors have inactivating mutations in SMARCA4 (BRG1), one of the two mutually exclusive ATPases of the SWI/SNF chromatin remodeling complex. To address the role that BRG1 loss plays in SCCOHT tumorigenesis, we performed integrative multi-omic analyses in SCCOHT cell lines +/- BRG1 reexpression. BRG1 reexpression induced a gene and protein signature similar to an epithelial cell and gained chromatin accessibility sites correlated with other epithelial originating TCGA tumors. Gained chromatin accessibility and BRG1 recruited sites were strongly enriched for transcription-factor-binding motifs of AP-1 family members. Furthermore, AP-1 motifs were enriched at the promoters of highly upregulated epithelial genes. Using a dominant-negative AP-1 cell line, we found that both AP-1 DNA-binding activity and BRG1 reexpression are necessary for the gene and protein expression of epithelial genes. Our study demonstrates that BRG1 reexpression drives an epithelial-like gene and protein signature in SCCOHT cells that depends upon by AP-1 activity.


Subject(s)
Carcinoma, Small Cell/pathology , DNA Helicases/genetics , Hypercalcemia/pathology , Nuclear Proteins/genetics , Ovarian Neoplasms/metabolism , Transcription Factor AP-1/metabolism , Transcription Factors/genetics , Biomarkers, Tumor/analysis , Carcinoma, Small Cell/genetics , Cell Line, Tumor , Cell Transformation, Neoplastic/genetics , DNA Helicases/metabolism , Female , Humans , Hypercalcemia/genetics , Mutation/genetics , Nuclear Proteins/metabolism , Ovarian Neoplasms/pathology , Ovary/metabolism , Ovary/pathology , Transcription Factor AP-1/genetics , Transcription Factors/metabolism
2.
J Pathol ; 242(3): 371-383, 2017 07.
Article in English | MEDLINE | ID: mdl-28444909

ABSTRACT

Small cell carcinoma of the ovary, hypercalcaemic type (SCCOHT) is a rare but aggressive and untreatable malignancy affecting young women. We and others recently discovered that SMARCA4, a gene encoding the ATPase of the SWI/SNF chromatin-remodelling complex, is the only gene recurrently mutated in the majority of SCCOHT. The low somatic complexity of SCCOHT genomes and the prominent role of the SWI/SNF chromatin-remodelling complex in transcriptional control of genes suggest that SCCOHT cells may rely on epigenetic rewiring for oncogenic transformation. Herein, we report that approximately 80% (19/24) of SCCOHT tumour samples have strong expression of the histone methyltransferase EZH2 by immunohistochemistry, with the rest expressing variable amounts of EZH2. Re-expression of SMARCA4 suppressed the expression of EZH2 in SCCOHT cells. In comparison to other ovarian cell lines, SCCOHT cells displayed hypersensitivity to EZH2 shRNAs and two selective EZH2 inhibitors, GSK126 and EPZ-6438. EZH2 inhibitors induced cell cycle arrest, apoptosis, and cell differentiation in SCCOHT cells, along with the induction of genes involved in cell cycle regulation, apoptosis, and neuron-like differentiation. EZH2 inhibitors suppressed tumour growth and improved the survival of mice bearing SCCOHT xenografts. Therefore, our data suggest that loss of SMARCA4 creates a dependency on the catalytic activity of EZH2 in SCCOHT cells and that pharmacological inhibition of EZH2 is a promising therapeutic strategy for treating this disease. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Subject(s)
Carcinoma, Small Cell/enzymology , Enhancer of Zeste Homolog 2 Protein/antagonists & inhibitors , Histone-Lysine N-Methyltransferase/metabolism , Hypercalcemia/enzymology , Ovarian Neoplasms/enzymology , Animals , Apoptosis/physiology , Carcinoma, Ovarian Epithelial , Cell Cycle Checkpoints/physiology , Cell Line, Tumor , Cell Transformation, Neoplastic , DNA Helicases/deficiency , Down-Regulation , Enhancer of Zeste Homolog 2 Protein/metabolism , Female , Histone Methyltransferases , Humans , Neoplasm Transplantation , Neoplasms, Glandular and Epithelial/enzymology , Nuclear Proteins/deficiency , Transcription Factors/deficiency , Transplantation, Heterologous , Tumor Cells, Cultured , Up-Regulation
3.
J Pathol ; 238(3): 389-400, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26356327

ABSTRACT

Small cell carcinoma of the ovary, hypercalcaemic type (SCCOHT) is a lethal and sometimes familial ovarian tumour of young women and children. We and others recently discovered that over 90% of SCCOHTs harbour inactivating mutations in the chromatin remodelling gene SMARCA4 with concomitant loss of its encoded protein SMARCA4 (BRG1), one of two mutually exclusive ATPases of the SWI/SNF chromatin remodelling complex. To determine the specificity of SMARCA4 loss for SCCOHT, we examined the expression of SMARCA4 by immunohistochemistry in more than 3000 primary gynaecological tumours. Among ovarian tumours, it was only absent in clear cell carcinoma (15 of 360, 4%). In the uterus, it was absent in endometrial stromal sarcomas (4 of 52, 8%) and high-grade endometrioid carcinomas (2 of 338, 1%). Recent studies have shown that SMARCA2 (BRM), the other mutually exclusive ATPase of the SWI/SNF complex, is necessary for survival of tumour cells lacking SMARCA4. Therefore, we examined SMARCA2 expression and discovered that all SMARCA4-negative SCCOHTs also lacked SMARCA2 protein by IHC, including the SCCOHT cell lines BIN67 and SCCOHT1. Among ovarian tumours, the SMARCA4/SMARCA2 dual loss phenotype appears completely specific for SCCOHT. SMARCA2 loss was not due to mutation but rather from an absence of mRNA expression, which was restored by treatment with the histone deacetylase inhibitor trichostatin A. Re-expression of SMARCA4 or SMARCA2 inhibited the growth of BIN67 and SCCOHT1 cell lines. Our results indicate that SMARCA4 loss, either alone or with SMARCA2, is highly sensitive and specific for SCCOHT and that restoration of either SWI/SNF ATPase can inhibit the growth of SCCOHT cell lines.


Subject(s)
Biomarkers, Tumor/metabolism , Carcinoma, Small Cell/genetics , DNA Helicases/deficiency , Nuclear Proteins/deficiency , Ovarian Neoplasms/diagnosis , Transcription Factors/deficiency , Adenosine Triphosphatases/metabolism , Carcinoma, Small Cell/diagnosis , Cell Line, Tumor , Cell Proliferation/physiology , Cell Transformation, Neoplastic/genetics , Chromosomal Proteins, Non-Histone/deficiency , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , DNA Helicases/genetics , DNA Helicases/metabolism , DNA-Binding Proteins/deficiency , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Female , Gene Silencing/physiology , Humans , Hypercalcemia/genetics , Immunohistochemistry , Mutation/genetics , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Ovarian Neoplasms/genetics , SMARCB1 Protein , Transcription Factors/genetics , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...