Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 10(1): 8478, 2020 05 21.
Article in English | MEDLINE | ID: mdl-32439928

ABSTRACT

European pear (Pyrus communis L.) cultivars require a genetically pre-determined duration of cold-temperature exposure to induce autocatalytic system 2 ethylene biosynthesis and subsequent fruit ripening. The physiological responses of pear to cold-temperature-induced ripening have been well characterized, but the molecular mechanisms underlying this phenomenon continue to be elucidated. This study employed previously established cold temperature conditioning treatments for ripening of two pear cultivars, 'D'Anjou' and 'Bartlett'. Using a time-course transcriptomics approach, global gene expression responses of each cultivar were assessed at four stages of developmental during the cold conditioning process. Differential expression, functional annotation, and gene ontology enrichment analyses were performed. Interestingly, evidence for the involvement of cold-induced, vernalization-related genes and repressors of endodormancy release was found. These genes have not previously been described to play a role in fruit during the ripening transition. The resulting data provide insight into cultivar-specific mechanisms of cold-induced transcriptional regulation of ripening in European pear, as well as a unique comparative analysis of the two cultivars with very different cold conditioning requirements.


Subject(s)
Cold Temperature , Flowers/genetics , Fruit/growth & development , Gene Expression Regulation, Plant , Plant Proteins/genetics , Pyrus/growth & development , Transcriptome , Flowers/growth & development , Fruit/genetics , Pyrus/genetics
2.
Arch Insect Biochem Physiol ; 101(4): e21587, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31271487

ABSTRACT

The codling moth, Cydia pomonella, is a worldwide pest of pome fruits. Neuropeptides regulate most physiological functions in insects and represent new targets for the development of control agents. The only neuropeptides reported from the codling moth to date are the allatostatin A family peptides. To identify other neuropeptides and peptide hormones from codling moth, we analyzed head transcriptomes, identified 50 transcripts, and predicted 120 prepropeptides for the codling moth neuropeptides and peptide hormones. All transcripts were amplified, and these sequences were verified. One of the notable findings in this study is that diapause hormones (DHs) reported from Tortricid moths, including the codling moth, do not have the WFGPRL sequence in C-terminal ends in the pban genes. The C-terminal motif is critical to characterize insect DH peptides, and always conserved in pban/dh genes in Lepidoptera and many insect orders. Interestingly, the WFGPRL sequence was produced only from the capa gene in the codling moth. The allatostatin A-family encoding transcript predicted nine peptides, seven of which, as expected, are identical to those previously isolated from the moth. We also identified new codling moth orthologs of insect neuropeptides including CCHamides, allatostatin CC, RYamides, and natalisins. The information provided in this study will benefit future codling moth investigations using peptidoproteomics to determine peptide presence and functions.


Subject(s)
Moths/metabolism , Neuropeptides/metabolism , Peptide Hormones/metabolism , Amino Acid Sequence , Animals , Cloning, Molecular , Gene Expression Regulation , Neuropeptides/chemistry , Peptide Hormones/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...