Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
1.
FEMS Microbes ; 5: xtae017, 2024.
Article in English | MEDLINE | ID: mdl-38860142

ABSTRACT

Biofilm formation is a critical step in the pathogenesis of difficult-to-treat Gram-positive bacterial infections. We identified that YajC, a conserved membrane protein in bacteria, plays a role in biofilm formation of the clinically relevant Enterococcus faecium strain E1162. Deletion of yajC conferred significantly impaired biofilm formation in vitro and was attenuated in a rat endocarditis model. Mass spectrometry analysis of supernatants of washed ΔyajC cells revealed increased amounts in cytoplasmic and cell-surface-located proteins, including biofilm-associated proteins, suggesting that proteins on the surface of the yajC mutant are only loosely attached. In Streptococcus mutans YajC has been identified in complex with proteins of two cotranslational membrane protein-insertion pathways; the signal recognition particle (SRP)-SecYEG-YajC-YidC1 and the SRP-YajC-YidC2 pathway, but its function is unknown. In S. mutans mutation of yidC1 and yidC2 resulted in impaired protein insertion in the cell membrane and secretion in the supernatant. The E. faecium genome contains all homologous genes encoding for the cotranslational membrane protein-insertion pathways. By combining the studies in S. mutans and E. faecium, we propose that YajC is involved in the stabilization of the SRP-SecYEG-YajC-YidC1 and SRP-YajC-Yid2 pathway or plays a role in retaining proteins for proper docking to the YidC insertases for translocation in and over the membrane.

2.
Euro Surveill ; 29(23)2024 Jun.
Article in English | MEDLINE | ID: mdl-38847120

ABSTRACT

BackgroundThe war in Ukraine led to migration of Ukrainian people. Early 2022, several European national surveillance systems detected multidrug-resistant (MDR) bacteria related to Ukrainian patients.AimTo investigate the genomic epidemiology of New Delhi metallo-ß-lactamase (NDM)-producing Providencia stuartii from Ukrainian patients among European countries.MethodsWhole-genome sequencing of 66 isolates sampled in 2022-2023 in 10 European countries enabled whole-genome multilocus sequence typing (wgMLST), identification of resistance genes, replicons, and plasmid reconstructions. Five bla NDM-1-carrying-P. stuartii isolates underwent antimicrobial susceptibility testing (AST). Transferability to Escherichia coli of a bla NDM-1-carrying plasmid from a patient strain was assessed. Epidemiological characteristics of patients with NDM-producing P. stuartii were gathered by questionnaire.ResultswgMLST of the 66 isolates revealed two genetic clusters unrelated to Ukraine and three linked to Ukrainian patients. Of these three, two comprised bla NDM-1-carrying-P. stuartii and the third bla NDM-5-carrying-P. stuartii. The bla NDM-1 clusters (PstCluster-001, n = 22 isolates; PstCluster-002, n = 8 isolates) comprised strains from seven and four countries, respectively. The bla NDM-5 cluster (PstCluster-003) included 13 isolates from six countries. PstCluster-001 and PstCluster-002 isolates carried an MDR plasmid harbouring bla NDM-1, bla OXA-10, bla CMY-16, rmtC and armA, which was transferrable in vitro and, for some Ukrainian patients, shared by other Enterobacterales. AST revealed PstCluster-001 isolates to be extensively drug-resistant (XDR), but susceptible to cefiderocol and aztreonam-avibactam. Patients with data on age (n = 41) were 19-74 years old; of 49 with information on sex, 38 were male.ConclusionXDR P. stuartii were introduced into European countries, requiring increased awareness and precautions when treating patients from conflict-affected areas.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Multiple, Bacterial , Enterobacteriaceae Infections , Microbial Sensitivity Tests , Multilocus Sequence Typing , Plasmids , Providencia , Whole Genome Sequencing , beta-Lactamases , Humans , Ukraine/epidemiology , beta-Lactamases/genetics , Enterobacteriaceae Infections/microbiology , Enterobacteriaceae Infections/epidemiology , Enterobacteriaceae Infections/drug therapy , Drug Resistance, Multiple, Bacterial/genetics , Providencia/genetics , Providencia/isolation & purification , Providencia/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Europe/epidemiology , Plasmids/genetics , Male , Adult , Female , Middle Aged , Aged , Young Adult
3.
FEMS Microbes ; 5: xtae014, 2024.
Article in English | MEDLINE | ID: mdl-38813098

ABSTRACT

Enterococcus faecium is an opportunistic pathogen able to colonize the intestines of hospitalized patients. This initial colonization is an important step in the downstream pathogenesis, which includes outgrowth of the intestinal microbiota and potential infection of the host. The impact of intestinal overgrowth on host-enterococcal interactions is not well understood. We therefore applied a RNAseq approach in order to unravel the transcriptional dynamics of E. faecium upon co-culturing with human derived colonic epithelium. Co-cultures of colonic epithelium with a hospital-associated vancomycin resistant (vanA-type) E. faecium (VRE) showed that VRE resided on top of the colonic epithelium when analyzed by microscopy. RNAseq revealed that exposure to the colonic epithelium resulted in upregulation of 238 VRE genes compared to the control condition, including genes implicated in pili expression, conjugation (plasmid_2), genes related to sugar uptake, and biofilm formation (chromosome). In total, 260 were downregulated, including the vanA operon located on plasmid_3. Pathway analysis revealed an overall switch in metabolism to amino acid scavenging and reduction. In summary, our study demonstrates that co-culturing of VRE with human colonic epithelium promotes an elaborate gene response in VRE, enhancing our insight in host-E. faecium interactions, which might facilitate the design of novel anti-infectivity strategies.

4.
Lancet Microbe ; 5(6): e547-e558, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38677305

ABSTRACT

BACKGROUND: Morganella spp are opportunistic pathogens involved in various infections. Intrinsic resistance to multiple antibiotics (including colistin) combined with the emergence of carbapenemase producers reduces the number of active antimicrobials. The aim of this study was to characterise genetic features related to the spread of carbapenem-resistant Morganella spp. METHODS: This comparative genomic study included extensively drug-resistant Morganella spp isolates collected between Jan 1, 2013, and March 1, 2021, by the French National Reference Center (NRC; n=68) and European antimicrobial resistance reference centres in seven European countries (n=104), as well as one isolate from Canada, two reference strains from the Pasteur Institute collection (Paris, France), and two colistin-susceptible isolates from Bicêtre Hospital (Kremlin-Bicêtre, France). The isolates were characterised by whole-genome sequencing, antimicrobial susceptibility testing, and biochemical tests. Complete genomes from GenBank (n=103) were also included for genomic analysis, including phylogeny and determination of core genomes and resistomes. Genetic distance between different species or subspecies was performed using average nucleotide identity (ANI). Intrinsic resistance mechanisms to polymyxins were investigated by combining genetic analysis with mass spectrometry on lipid A. FINDINGS: Distance analysis by ANI of 275 isolates identified three groups: Morganella psychrotolerans, Morganella morganii subspecies sibonii, and M morganii subspecies morganii, and a core genome maximum likelihood phylogenetic tree showed that the M morganii isolates can be separated into four subpopulations. On the basis of these findings and of phenotypic divergences between isolates, we propose a modified taxonomy for the Morganella genus including four species, Morganella psychrotolerans, Morganella sibonii, Morganella morganii, and a new species represented by a unique environmental isolate. We propose that M morganii include two subspecies: M morganii subspecies morganii (the most prevalent) and M morganii subspecies intermedius. This modified taxonomy was supported by a difference in intrinsic resistance to tetracycline and conservation of metabolic pathways such as trehalose assimilation, both only present in M sibonii. Carbapenemase producers were mostly identified among five high-risk clones of M morganii subspecies morganii. The most prevalent carbapenemase corresponded to NDM-1, followed by KPC-2, and OXA-48. A cefepime-zidebactam combination was the most potent antimicrobial against the 172 extensively drug-resistant Morganella spp isolates in our collection from different European countries, which includes metallo-ß-lactamase producers. Lipid A analysis showed that the intrinsic resistance to colistin was associated with the presence of L-ARA4N on lipid A. INTERPRETATION: This global characterisation of, to our knowledge, the widest collection of extensively drug-resistant Morganella spp highlights the need to clarify the taxonomy and decipher intrinsic resistance mechanisms, and paves the way for further genomic comparisons. FUNDING: None.


Subject(s)
Anti-Bacterial Agents , Bacterial Proteins , Enterobacteriaceae Infections , Genome, Bacterial , Microbial Sensitivity Tests , Morganella , Phylogeny , beta-Lactamases , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , beta-Lactamases/genetics , beta-Lactamases/metabolism , Anti-Bacterial Agents/pharmacology , Genome, Bacterial/genetics , Humans , Enterobacteriaceae Infections/microbiology , Enterobacteriaceae Infections/epidemiology , Morganella/genetics , Genomics , Whole Genome Sequencing , Europe/epidemiology , Carbapenems/pharmacology , Drug Resistance, Multiple, Bacterial/genetics , Colistin/pharmacology
6.
Emerg Infect Dis ; 29(12): 2563-2565, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37987600

ABSTRACT

During 2015-2022, a genetic cluster of OXA-48-producing uropathogenic Escherichia coli sequence type 127 spread throughout the Netherlands. The 20 isolates we investigated originated mainly from urine, belonged to Clermont phylotype B2, and carried 18 genes encoding putative uropathogenicity factors. The isolates were susceptible to first-choice antimicrobial drugs for urinary tract infections.


Subject(s)
Escherichia coli Infections , Urinary Tract Infections , Uropathogenic Escherichia coli , Humans , Escherichia coli Infections/epidemiology , Uropathogenic Escherichia coli/genetics , Netherlands/epidemiology , Urinary Tract Infections/epidemiology , Anti-Bacterial Agents , Virulence Factors/genetics , beta-Lactamases/genetics
7.
Commun Med (Lond) ; 3(1): 123, 2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37700016

ABSTRACT

BACKGROUND: Although the Netherlands is a country with a low endemic level, methicillin-resistant Staphylococcus aureus (MRSA) poses a significant health care problem. Therefore, high coverage national MRSA surveillance has been in place since 1989. To monitor possible changes in the type-distribution and emergence of resistance and virulence, MRSA isolates are molecularly characterized. METHODS: All 43,321 isolates from 36,520 persons, collected 2008-2019, were typed by multiple-locus variable number tandem repeats analysis (MLVA) with simultaneous PCR detection of the mecA, mecC and lukF-PV genes, indicative for PVL. Next-generation sequencing data of 4991 isolates from 4798 persons were used for whole genome multi-locus sequence typing (wgMLST) and identification of resistance and virulence genes. RESULTS: We show temporal change in the molecular characteristics of the MRSA population with the proportion of PVL-positive isolates increasing from 15% in 2008-2010 to 25% in 2017-2019. In livestock-associated MRSA obtained from humans, PVL-positivity increases to 6% in 2017-2019 with isolates predominantly from regions with few pig farms. wgMLST reveals the presence of 35 genogroups with distinct resistance, virulence gene profiles and specimen origin. Typing shows prolonged persistent MRSA carriage with a mean carriage period of 407 days. There is a clear spatial and a weak temporal relationship between isolates that clustered in wgMLST, indicative for regional spread of MRSA strains. CONCLUSIONS: Using molecular characterization, this exceptionally large study shows genomic changes in the MRSA population at the national level. It reveals waxing and waning of types and genogroups and an increasing proportion of PVL-positive MRSA.


A group of bacteria that cause difficult-to-treat infections in humans is methicillin-resistant Staphylococcus aureus (MRSA). The aim of this study was to monitor changes in the spread of MRSA, their disease causing potential and resistance to antibiotics used to treat MRSA infections. MRSA from patients and their contacts in the Netherlands were collected over a period of 12 years and characterized. This revealed new types of MRSA emerged and others disappeared. An increasing number of MRSA produces a protein called PVL toxin, enabling MRSA to cause more severe infections. Also, some people appear to carry MRSA without any disease for more than a year. These findings suggest an increasing disease potential of MRSA and possible unnoticed sources of infection. Consequently, it is important to maintain monitoring of these infections to minimize MRSA spread.

8.
Microbiol Spectr ; 11(4): e0471622, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37310221

ABSTRACT

In this study, we determined the presence of virulence factors in nonoutbreak, high-risk clones and other isolates belonging to less common sequence types associated with the spread of OXA-48-producing Klebsiella pneumoniae clinical isolates from The Netherlands (n = 61) and Spain (n = 53). Most isolates shared a chromosomally encoded core of virulence factors, including the enterobactin gene cluster, fimbrial fim and mrk gene clusters, and urea metabolism genes (ureAD). We observed a high diversity of K-Locus and K/O loci combinations, KL17 and KL24 (both 16%), and the O1/O2v1 locus (51%) being the most prevalent in our study. The most prevalent accessory virulence factor was the yersiniabactin gene cluster (66.7%). We found seven yersiniabactin lineages-ybt 9, ybt 10, ybt 13, ybt 14, ybt 16, ybt 17, and ybt 27-which were chromosomally embedded in seven integrative conjugative elements (ICEKp): ICEKp3, ICEKp4, ICEKp2, ICEKp5, ICEKp12, ICEKp10, and ICEKp22, respectively. Multidrug-resistant lineages-ST11, ST101, and ST405-were associated with ybt 10/ICEKp4, ybt 9/ICEKp3, and ybt 27/ICEKp22, respectively. The fimbrial adhesin kpi operon (kpiABCDEFG) was predominant among ST14, ST15, and ST405 isolates, as well as the ferric uptake system kfuABC, which was also predominant among ST101 isolates. No convergence of hypervirulence and resistance was observed in this collection of OXA-48-producing K. pneumoniae clinical isolates. Nevertheless, two isolates, ST133 and ST792, were positive for the genotoxin colibactin gene cluster (ICEKp10). In this study, the integrative conjugative element, ICEKp, was the major vehicle for yersiniabactin and colibactin gene clusters spreading. IMPORTANCE Convergence of multidrug resistance and hypervirulence in Klebsiella pneumoniae isolates has been reported mostly related to sporadic cases or small outbreaks. Nevertheless, little is known about the real prevalence of carbapenem-resistant hypervirulent K. pneumoniae since these two phenomena are often separately studied. In this study, we gathered information on the virulent content of nonoutbreak, high-risk clones (i.e., ST11, ST15, and ST405) and other less common STs associated with the spread of OXA-48-producing K. pneumoniae clinical isolates. The study of virulence content in nonoutbreak isolates can help us to expand information on the genomic landscape of virulence factors in K. pneumoniae population by identifying virulence markers and their mechanisms of spread. Surveillance should focus not only on antimicrobial resistance but also on virulence characteristics to avoid the spread of multidrug and (hyper)virulent K. pneumoniae that may cause untreatable and more severe infections.


Subject(s)
Klebsiella Infections , Klebsiella pneumoniae , Humans , beta-Lactamases/genetics , Klebsiella Infections/epidemiology , Spain/epidemiology , Netherlands , Virulence Factors/genetics , Multigene Family , Anti-Bacterial Agents , Bacterial Proteins/genetics
10.
Clin Microbiol Infect ; 29(9): 1166-1173, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37207981

ABSTRACT

OBJECTIVES: Methicillin-resistant Staphylococcus aureus (MRSA) infections impose a considerable burden on health systems, yet there is remarkable variation in the global incidence and epidemiology of MRSA. The MACOTRA consortium aimed to identify bacterial markers of epidemic success of MRSA isolates in Europe using a representative MRSA collection originating from France, the Netherlands and the United Kingdom. METHODS: Operational definitions of success were defined in consortium meetings to compose a balanced strain collection of successful and sporadic MRSA isolates. Isolates were subjected to antimicrobial susceptibility testing and whole-genome sequencing; genes were identified and phylogenetic trees constructed. Markers of epidemiological success were identified using genome-based time-scaled haplotypic density analysis and linear regression. Antimicrobial usage data from ESAC-Net was compared with national MRSA incidence data. RESULTS: Heterogeneity of MRSA isolate collections across countries hampered the use of a unified operational definition of success; therefore, country-specific approaches were used to establish the MACOTRA strain collection. Phenotypic antimicrobial resistance varied within related MRSA populations and across countries. In time-scaled haplotypic density analysis, fluoroquinolone, macrolide and mupirocin resistance were associated with MRSA success, whereas gentamicin, rifampicin and trimethoprim resistance were associated with sporadicity. Usage of antimicrobials across 29 European countries varied substantially, and ß-lactam, fluoroquinolone, macrolide and aminoglycoside use correlated with MRSA incidence. DISCUSSION: Our results are the strongest yet to associate MRSA antibiotic resistance profiles and antibiotic usage with the incidence of infection and successful clonal spread, which varied by country. Harmonized isolate collection, typing, resistance profiling and alignment with antimicrobial usage over time will aid comparisons and further support country-specific interventions to reduce MRSA burden.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Humans , Phylogeny , Staphylococcal Infections/microbiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Fluoroquinolones , Microbial Sensitivity Tests
11.
Euro Surveill ; 28(19)2023 05.
Article in English | MEDLINE | ID: mdl-37166762

ABSTRACT

Whole genome sequencing data of 874 Escherichia coli isolates carrying bla NDM-5 from 13 European Union/European Economic Area countries between 2012 and June 2022 showed the predominance of sequence types ST167, ST405, ST410, ST361 and ST648, and an increasing frequency of detection. Nearly a third (30.6%) of these isolates were associated with infections and more than half (58.2%) were predicted to be multidrug-resistant. Further spread of E. coli carrying bla NDM-5 would leave limited treatment options for serious E. coli infections.


Subject(s)
Escherichia coli Infections , Escherichia coli , Humans , beta-Lactamases/genetics , Drug Resistance, Multiple, Bacterial/genetics , Escherichia coli/genetics , Escherichia coli/isolation & purification , Escherichia coli Infections/drug therapy , Escherichia coli Infections/epidemiology , European Union , Microbial Sensitivity Tests , Europe/epidemiology
12.
J Antimicrob Chemother ; 78(5): 1300-1308, 2023 05 03.
Article in English | MEDLINE | ID: mdl-36999363

ABSTRACT

BACKGROUND: Carbapenem-resistant Klebsiella pneumoniae (CRKP) strains are of particular concern, especially strains with mobilizable carbapenemase genes such as blaKPC, blaNDM or blaOXA-48, given that carbapenems are usually the last line drugs in the ß-lactam class and, resistance to this sub-class is associated with increased mortality and frequently co-occurs with resistance to other antimicrobial classes. OBJECTIVES: To characterize the genomic diversity and international dissemination of CRKP strains from tertiary care hospitals in Lisbon, Portugal. METHODS: Twenty CRKP isolates obtained from different patients were subjected to WGS for species confirmation, typing, drug resistance gene detection and phylogenetic reconstruction. Two additional genomic datasets were included for comparative purposes: 26 isolates (ST13, ST17 and ST231) from our collection and 64 internationally available genomic assemblies (ST13). RESULTS: By imposing a 21 SNP cut-off on pairwise comparisons we identified two genomic clusters (GCs): ST13/GC1 (n = 11), all bearing blaKPC-3, and ST17/GC2 (n = 4) harbouring blaOXA-181 and blaCTX-M-15 genes. The inclusion of the additional datasets allowed the expansion of GC1/ST13/KPC-3 to 23 isolates, all exclusively from Portugal, France and the Netherlands. The phylogenetic tree reinforced the importance of the GC1/KPC-3-producing clones along with their rapid emergence and expansion across these countries. The data obtained suggest that the ST13 branch emerged over a decade ago and only more recently did it underpin a stronger pulse of transmission in the studied population. CONCLUSIONS: This study identifies an emerging OXA-181/ST17-producing strain in Portugal and highlights the ongoing international dissemination of a KPC-3/ST13-producing clone from Portugal.


Subject(s)
Carbapenem-Resistant Enterobacteriaceae , Klebsiella Infections , Humans , Klebsiella pneumoniae , Phylogeny , Portugal/epidemiology , beta-Lactamases/genetics , Bacterial Proteins/genetics , Carbapenems , Genomics , Microbial Sensitivity Tests , Klebsiella Infections/epidemiology , Anti-Bacterial Agents/pharmacology , Molecular Chaperones/genetics , Tumor Suppressor Proteins/genetics
13.
J Antimicrob Chemother ; 78(5): 1168-1174, 2023 05 03.
Article in English | MEDLINE | ID: mdl-36995977

ABSTRACT

OBJECTIVES: MRSA carrying the mecC gene (mecC-MRSA) have been found in humans and animals worldwide. A high carriage rate of mecC-MRSA has been described among hedgehogs in different countries. We performed genomic comparison of mecC-MRSA from hedgehogs and humans using next-generation sequencing (NGS) to investigate possible zoonotic transmission in the Netherlands. METHODS: Nasal swabs from hedgehogs (n = 105) were cultured using pre-enrichment and selective plates. Isolates were sequenced using Illumina NGS platforms. These data were compared with sequence data of mecC-MRSA (n = 62) from the Dutch national MRSA surveillance in humans. RESULTS: Fifty hedgehogs were found to be MRSA positive, of which 48 carried mecC. A total of 60 mecC-MRSA isolates derived from 50 hedgehogs were compared with the human isolates. Fifty-nine mecC-MRSA from hedgehogs and all but one isolate from humans belonged to clonal complexes CC130 and CC1943. The mecC gene was located within the SCCmec XI element. Most mecC-MRSA did not carry other resistance genes besides mecC and blaZ. Two human isolates carried erm(C). Isolates differed in the presence of various virulence genes, which were linked to distinct STs and clonal complexes. Some isolates had up to 17 virulence genes, which underlines their pathogenic potential. No genetic clusters of hedgehog and human isolates were found. CONCLUSIONS: mecC-MRSA from hedgehogs and humans mainly belonged to the same two clonal complexes, indicating a common source. No firm evidence for recent zoonotic transmission was found. Further studies are needed to investigate the role of hedgehogs in the occurrence of mecC-MRSA in humans.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Animals , Humans , Methicillin-Resistant Staphylococcus aureus/genetics , Netherlands/epidemiology , Bacterial Proteins/genetics , Staphylococcal Infections/epidemiology , Staphylococcal Infections/veterinary , Hedgehog Proteins , Genomics , Microbial Sensitivity Tests
14.
Commun Med (Lond) ; 2: 135, 2022.
Article in English | MEDLINE | ID: mdl-36317053

ABSTRACT

Background: Although the Netherlands is a country with a low endemic level of methicillin-resistant Staphylococcus aureus (MRSA), a national MRSA surveillance has been in place since 1989. In 2003 livestock emerged as a major reservoir of MRSA and currently livestock-associated MRSA (clonal complex CC398) make up 25% of all surveillance isolates. To assess possible transfer of resistant strains or resistance genes, MRSA obtained from humans and animals were characterized in detail. Methods: The sequenced genomes of 6327 MRSA surveillance isolates from humans and from 332 CC398 isolates from livestock-related samples were analyzed and resistance genes were identified. Several isolates were subjected to long-read sequencing to reconstruct chromosomes and plasmids. Results: Here we show the presence of the multi-resistance gene cfr in seven CC398 isolates obtained from humans and in one CC398 isolate from a pig-farm dust sample. Cfr induces resistance against five antibiotic classes, which is true for all but two isolates. The isolates are genetically unrelated, and in seven of the isolates cfr are located on distinct plasmids. The fexA gene is found in 3.9% surveillance isolates and in 7.5% of the samples from livestock. There is considerable sequence variation of fexA and geographic origin of the fexA alleles. Conclusions: The rare cfr and fexA resistance genes are found in MRSA from humans and animals in the Netherlands, but there is no evidence for spread of resistant strains or resistance plasmids. The proportion of cfr-positive MRSA is low, but its presence is worrying and should be closely monitored.

15.
J Glob Antimicrob Resist ; 31: 207-211, 2022 12.
Article in English | MEDLINE | ID: mdl-36184039

ABSTRACT

OBJECTIVES: A recent occurrence of carbapenemase-producing Acinetobacter ursingii was reported in the Netherlands and comprised three unrelated strains carrying the blaIMP-4 and blaOXA-58 encoding genes. The objective was to investigate a putative common source of the carbapenemase resistance genes and plasmids in these A. ursingii strains. METHODS: Hybrid assembly of short-read and long-read sequencing data was performed using Unicycler and assembled genomes were analysed by ResFinder and PlasmidFinder. RESULTS: Hybrid assemblies of A. ursingii genomes yielded a circular chromosome, a large plasmid harboring blaIMP-4 and blaOXA-58 genes (sizes 259-317kb), and four to five other smaller plasmids. ResFinder analyses revealed 16 other acquired resistance genes on the plasmids carrying the blaIMP-4 and blaOXA-58 genes. These 18 genes encode resistance towards eight antibiotic classes. The smaller plasmids did not carry acquired resistance genes. Comparative analysis showed that the three blaIMP-4/blaOXA-58 plasmids were similar (61%-83%) and shared 13 to 17 of the 18 resistance genes. BLAST analysis showed that the blaIMP-4/blaOXA-58 plasmids were not reported before. However, a close match with a 399 kb plasmid from Acinetobacter johnsonii was found (99% similarity, 80% coverage). This A. johnsonii plasmid contains the blaOXA-58 gene, but lacks blaIMP-4, and it shares eight other resistance genes with those present on the A. ursingii blaIMP-4/blaOXA-58 plasmids. CONCLUSION: Three blaIMP-4/blaOXA-58-carrying plasmids were characterized in three carbapenemase-producing A. ursingii strains. The plasmids were highly similar, suggesting a putative common source or co-selection of resistance genes from A. johnsonii. These results provide initial insights in the dissemination of carbapenem-resistance in A. ursingii in the Netherlands.


Subject(s)
Plasmids , beta-Lactamases , Microbial Sensitivity Tests , Netherlands , Plasmids/genetics
17.
Microbiol Spectr ; 10(5): e0103522, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36005448

ABSTRACT

Staphylococcus argenteus is a recently described member of the Staphylococcus aureus complex (SAC) and is associated with human disease. The frequency and intensity of infections caused by S. argenteus are similar to those of Staphylococcus aureus. S. argenteus can harbor antibiotic resistance genes and a variety of virulence factors analogous to methicillin-resistant S. aureus (MRSA). The aim of our study was to analyze a collection of isolates in the Dutch national MRSA surveillance from January 2008 until March 2021 that were nontypeable by multilocus variable-number tandem-repeat analysis (MLVA). Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-ToF MS) was used for identifying the S. argenteus isolates, and whole-genome sequencing and SeqSphere were used to generate an in-house whole-genome multilocus sequence typing (wgMLST) scheme for typing the isolates. Furthermore, the presence of antibiotic resistance genes, replicons, and virulence genes was determined. Of 52,467 isolates submitted as MRSA from January 2008 until March 2021, 64 isolates (0.12%) were nontypeable with MLVA, and 54 of them were identified with mass spectrometry (MALDI-ToF MS) as S. argenteus. It appeared in retrospect that the first methicillin-resistant S. argenteus (MRSArg) was already submitted in 2008. An in-house-developed S. argenteus wgMLST scheme revealed that S. argenteus isolates clustered in 5 genomic groups which were characterized by distinct MLST types, resistomes, plasmid replicon families, and virulence factors. All but one isolate carried the staphylococcal chromosomal cassette mec (SCCmec) type IV harboring the methicillin resistance gene mecA and represent MRSArg. Most of the isolates with SCCmec subtype IVc(2B) had a trimethoprim resistance gene, dfrG, and harbored a blaZ-carrying plasmid, and most MRSArg isolates have the immune-modulating genes scn and sak. Nine of the 47 isolates carried enterotoxin-encoding genes seg, sei, sem, seo, and seu, which might be able to cause food poisoning. In some persons there was long-term persistence of MRSArg, and there were several genetically related MRSArg isolates in people living in close proximity, suggesting direct human-human transmission. IMPORTANCE We show that MRSArg has been circulating in the Netherlands since at least 2008. Although MRSArg is distinct from MRSA, it has a comparable population structure and carries similar resistance and virulence genes. The Dutch national MRSA surveillance has been expanded to include other methicillin-resistant members of the S. aureus complex, such as S. argenteus and Staphylococcus schweitzeri.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Humans , Methicillin Resistance/genetics , Methicillin-Resistant Staphylococcus aureus/genetics , Staphylococcus aureus/genetics , Multilocus Sequence Typing , Microbial Sensitivity Tests , Staphylococcal Infections/epidemiology , Anti-Bacterial Agents/pharmacology , Enterotoxins , Virulence Factors/genetics
18.
Eur J Clin Microbiol Infect Dis ; 41(8): 1133-1138, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35790590

ABSTRACT

Infections with hypervirulent Klebsiella pneumoniae (hvKp) commonly presents with primary liver infection, bacteremia, and metastatic abscesses. Here, we present 2 cases of severe community-acquired pulmonary infections by hvKp in patients in the Netherlands without recent travel history. Both bacterial isolates are closely related to an archetype ST23 hvKp reference isolate. Based on these findings, surveillance programs on hvKp may consider to include isolates from community-acquired pneumonia by K. pneumoniae.


Subject(s)
Community-Acquired Infections , Klebsiella Infections , Pneumonia , Community-Acquired Infections/microbiology , Humans , Klebsiella Infections/microbiology , Klebsiella pneumoniae , Netherlands , Virulence
19.
Open Forum Infect Dis ; 9(7): ofac324, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35899275

ABSTRACT

Fecal microbiota transplantation (FMT) has been reported to decrease the incidence of recurrent urinary tract infections (UTIs), presumably by restoring microbiome diversity and/or uropathogen competition. We report a 16-year-old female with recurrent UTIs caused by multidrug-resistant Klebsiella pneumoniae, for which frequent intravenous broad-spectrum antibiotic treatment was necessary. The patient was treated with FMT from a well-screened healthy donor without multidrug-resistant bacteria in the feces. After FMT, she developed several UTIs with an antibiotic-susceptible Escherichia coli that could be treated orally. The uropathogenic E. coli could be cultured from donor feces, and whole genome sequencing confirmed donor-to-recipient transmission. Our observation should stimulate discussion on long-term follow-up of all infections after FMT and donor fecal screening for antibiotic-susceptible Enterobacterales.

20.
Commun Med (Lond) ; 2: 55, 2022.
Article in English | MEDLINE | ID: mdl-35607432

ABSTRACT

Background: Colistin is a last-resort treatment option for infections with multidrug-resistant Gram-negative bacteria. However, colistin resistance is increasing. Methods: A six-month prospective matched case-control study was performed in which 22 Dutch laboratories with 32 associated hospitals participated. Laboratories were invited to send a maximum of five colistin-resistant Escherichia coli or Klebsiella pneumoniae (COLR-EK) isolates and five colistin-susceptible isolates (COLS-EK) to the reference laboratory, matched for patient location, material of origin and bacterial species. Epidemiological/clinical data were collected and included in the analysis. Characteristics of COLR-EK/COLS-EK isolates were compared using logistic regression with correction for variables used for matching. Forty-six ColR-EK/ColS-EK pairs were analysed by next-generation sequencing (NGS) for whole-genome multi-locus sequence typing and identification of resistance genes, including mcr genes. To identify chromosomal mutations potentially leading to colistin resistance, NGS reads were mapped against gene sequences of pmrAB, phoPQ, mgrB and crrB. Results: In total, 72 COLR-EK/COLS-EK pairs (75% E. coli and 25% K. pneumoniae) were included. Twenty-one percent of COLR-EK patients had received colistin, in contrast to 3% of COLS-EK patients (OR > 2.9). Of COLR-EK isolates, five contained mcr-1 and two mcr-9. One isolate lost mcr-9 after repeated sub-culturing, but retained colistin resistance. Among 46 sequenced COLR-EK isolates, genetic diversity was large and 19 (41.3%) isolates had chromosomal mutations potentially associated with colistin resistance. Conclusions: Colistin resistance is present but uncommon in the Netherlands and caused by the mcr gene in a minority of COLR-EK isolates. There is a need for surveillance of colistin resistance using appropriate susceptibility testing methods.

SELECTION OF CITATIONS
SEARCH DETAIL
...