Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
J Fungi (Basel) ; 10(1)2024 Jan 06.
Article in English | MEDLINE | ID: mdl-38248960

ABSTRACT

Whole genome sequencing (WGS) is widely used for outbreak analysis of bacteriology and virology but is scarcely used in mycology. Here, we used WGS for genotyping Aspergillus fumigatus isolates from a potential Aspergillus outbreak in an intensive care unit (ICU) during construction work. After detecting the outbreak, fungal cultures were performed on all surveillance and/or patient respiratory samples. Environmental samples were obtained throughout the ICU. WGS was performed on 30 isolates, of which six patient samples and four environmental samples were related to the outbreak, and twenty samples were unrelated, using the Illumina NextSeq 550. A SNP-based phylogenetic tree was created from outbreak samples and unrelated samples. Comparative analysis (WGS and short tandem repeats (STRs), microsatellite loci analysis) showed that none of the strains were related to each other. The lack of genetic similarity suggests the accumulation of Aspergillus spores in the hospital environment, rather than a single source that supported growth and reproduction of Aspergillus fumigatus. This supports the hypothesis that the Aspergillus outbreak was likely caused by release of Aspergillus fumigatus spores during construction work. Indeed, no new Aspergillus cases were observed in the ICU after cessation of construction. This study demonstrates that WGS is a suitable technique for examining inter-strain relatedness of Aspergillus fumigatus in the setting of an outbreak investigation.

2.
Microorganisms ; 11(4)2023 Mar 30.
Article in English | MEDLINE | ID: mdl-37110328

ABSTRACT

Francisella tularensis is a zoonotic bacterium that is endemic in large parts of the world. It is absent in the standard library of the most applied matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) systems: the Vitek MS and the Bruker Biotyper system. The additional Bruker MALDI Biotyper Security library contains F. tularensis without subspecies differentiation. The virulence of F. tularensis differs between the subspecies. The F. tularensis subspecies (ssp.) tularensis is highly pathogenic, whereas the subspecies holarctica displays lower virulence and subspecies novicida and F. tularensis ssp. mediasiatica are hardly virulent. To differentiate the Francisellaceae and the F. tularensis-subspecies, an in-house Francisella library was built with the Bruker Biotyper system and validated together with the existing Bruker databases. In addition, specific biomarkers were defined based on the main spectra of the Francisella strains supplemented with in silico genome data. Our in-house Francisella library accurately differentiates the F. tularensis subspecies and the other Francisellaceae. The biomarkers correctly differentiate the various species within the genus Francisella and the F. tularensis subspecies. These MALDI-TOF MS strategies can successfully be applied in a clinical laboratory setting as a fast and specific method to identify F. tularensis to subspecies level.

3.
Front Microbiol ; 11: 564103, 2020.
Article in English | MEDLINE | ID: mdl-33193150

ABSTRACT

Shigella spp. and entero-invasive Escherichia coli (EIEC) can cause mild diarrhea to dysentery. In Netherlands, although shigellosis is a notifiable disease, there is no laboratory surveillance for Shigella spp. and EIEC in place. Consequently, the population structure for circulating Shigella spp. and EIEC isolates is not known. This study describes the phenotypic and serological characteristics, the phenotypic and genetic antimicrobial resistance (AMR) profiles, the virulence gene profiles, the classic multi-locus sequence types (MLST) and core genome (cg)MLST types, and the epidemiology of 414 Shigella spp. and EIEC isolates collected during a cross-sectional study in Netherlands in 2016 and 2017. S. sonnei (56%), S. flexneri (25%), and EIEC (15%) were detected predominantly in Netherlands, of which the EIEC isolates were most diverse according to their phenotypical profile, O-types, MLST types, and cgMLST clades. Virulence gene profiling showed that none of the isolates harbored Shiga toxin genes. Most S. flexneri and EIEC isolates possessed nearly all virulence genes examined, while these genes were only detected in approximately half of the S. sonnei isolates, probably due to loss of the large invasion plasmid upon subculturing. Phenotypical resistance correlated well with the resistant genotype, except for the genes involved in resistance to aminoglycosides. A substantial part of the characterized isolates was resistant to antimicrobials advised for treatment, i.e., 73% was phenotypically resistant to co-trimoxazole and 19% to ciprofloxacin. AMR was particularly observed in isolates from male patients who had sex with men (MSM) or from patients that had traveled to Asia. Furthermore, isolates related to international clusters were also circulating in Netherlands. Travel-related isolates formed clusters with isolates from patients without travel history, indicating their emergence into the Dutch population. In conclusion, laboratory surveillance using whole genome sequencing as high-resolution typing technique and for genetic characterization of isolates complements the current epidemiological surveillance, as the latter is not sufficient to detect all (inter)national clusters, emphasizing the importance of multifactorial public health approaches.

4.
BMC Genomics ; 21(1): 138, 2020 Feb 10.
Article in English | MEDLINE | ID: mdl-32041522

ABSTRACT

BACKGROUND: We investigated the association of symptoms and disease severity of shigellosis patients with genetic determinants of infecting Shigella and entero-invasive Escherichia coli (EIEC), because determinants that predict disease outcome per individual patient could be used to prioritize control measures. For this purpose, genome wide association studies (GWAS) were performed using presence or absence of single genes, combinations of genes, and k-mers. All genetic variants were derived from draft genome sequences of isolates from a multicenter cross-sectional study conducted in the Netherlands during 2016 and 2017. Clinical data of patients consisting of binary/dichotomous representation of symptoms and their calculated severity scores were also available from this study. To verify the suitability of the methods used, the genetic differences between the genera Shigella and Escherichia were used as control. RESULTS: The isolates obtained were representative of the population structure encountered in other Western European countries. No association was found between single genes or combinations of genes and separate symptoms or disease severity scores. Our benchmark characteristic, genus, resulted in eight associated genes and > 3,000,000 k-mers, indicating adequate performance of the algorithms used. CONCLUSIONS: To conclude, using several microbial GWAS methods, genetic variants in Shigella spp. and EIEC that can predict specific symptoms or a more severe course of disease were not identified, suggesting that disease severity of shigellosis is dependent on other factors than the genetic variation of the infecting bacteria. Specific genes or gene fragments of isolates from patients are unsuitable to predict outcomes and cannot be used for development, prioritization and optimization of guidelines for control measures of shigellosis or infections with EIEC.


Subject(s)
Dysentery, Bacillary/diagnosis , Dysentery, Bacillary/microbiology , Escherichia coli Infections/diagnosis , Escherichia coli Infections/microbiology , Escherichia coli/genetics , Shigella/genetics , Cross-Sectional Studies , Escherichia coli/classification , Escherichia coli/isolation & purification , Genetic Markers , Genome-Wide Association Study , Humans , Phylogeny , Shigella/classification , Shigella/isolation & purification
5.
BMC Infect Dis ; 13: 86, 2013 Feb 14.
Article in English | MEDLINE | ID: mdl-23409683

ABSTRACT

BACKGROUND: Burkholderia mallei and B. pseudomallei are two closely related species of highly virulent bacteria that can be difficult to detect. Pathogenic Burkholderia are endemic in many regions worldwide and cases of infection, sometimes brought by travelers from unsuspected regions, also occur elsewhere. Rapid, sensitive methods for identification of B. mallei and B. pseudomallei are urgently needed in the interests of patient treatment and epidemiological surveillance. METHODS: Signature sequences for sensitive, specific detection of pathogenic Burkholderia based on published genomes were identified and a qPCR assay was designed and validated. RESULTS: A single-reaction quadruplex qPCR assay for the detection of pathogenic Burkholderia, which includes a marker for internal control of DNA extraction and amplification, was developed. The assay permits differentiation of B. mallei and B. pseudomallei strains, and probit analysis showed a very low detection limit. Use of a multicopy signature sequence permits detection of less than 1 genome equivalent per reaction. CONCLUSIONS: The new assay permits rapid detection of pathogenic Burkholderia and combines enhanced sensitivity, species differentiation, and inclusion of an internal control for both DNA extraction and PCR amplification.


Subject(s)
Burkholderia mallei/genetics , Burkholderia pseudomallei/genetics , Glanders/diagnosis , Melioidosis/diagnosis , Animals , Bacterial Proteins/genetics , Humans , Molecular Typing/methods , Molecular Typing/standards , Multiplex Polymerase Chain Reaction/methods , Multiplex Polymerase Chain Reaction/standards , Real-Time Polymerase Chain Reaction/methods , Real-Time Polymerase Chain Reaction/standards , Reproducibility of Results , Sensitivity and Specificity
6.
PLoS One ; 6(12): e28365, 2011.
Article in English | MEDLINE | ID: mdl-22162765

ABSTRACT

The Beijing strain is one of the most successful genotypes of Mycobacterium tuberculosis worldwide and appears to be highly homogenous according to existing genotyping methods. To type Beijing strains reliably we developed a robust typing scheme using single nucleotide polymorphisms (SNPs) and regions of difference (RDs) derived from whole-genome sequencing data of eight Beijing strains. SNP/RD typing of 259 M. tuberculosis isolates originating from 45 countries worldwide discriminated 27 clonal complexes within the Beijing genotype family. A total of 16 Beijing clonal complexes contained more than one isolate of known origin, of which two clonal complexes were strongly associated with South African origin. The remaining 14 clonal complexes encompassed isolates from different countries. Even highly resolved clonal complexes comprised isolates from distinct geographical sites. Our results suggest that Beijing strains spread globally on multiple occasions and that the tuberculosis epidemic caused by the Beijing genotype is at least partially driven by modern migration patterns. The SNPs and RDs presented in this study will facilitate future molecular epidemiological and phylogenetic studies on Beijing strains.


Subject(s)
Bacterial Typing Techniques , Mycobacterium tuberculosis/metabolism , Algorithms , Cluster Analysis , Genes, Bacterial , Genome, Bacterial , Genotype , Likelihood Functions , Models, Statistical , Molecular Epidemiology , Phylogeny , Phylogeography , Polymorphism, Restriction Fragment Length , Polymorphism, Single Nucleotide , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...