Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 11(1): 13210, 2021 06 24.
Article in English | MEDLINE | ID: mdl-34168176

ABSTRACT

Recently, radiocarbon dating underwent considerable technological advances allowing unprecedented sample size downscaling. These achievements introduced novel opportunities in dating cultural heritage objects. Within this pioneering research, the possibility of a direct 14C dating of lead white pigment and organic binder in paint samples was investigated on polychrome sculptures, a foremost artistic expression in human history. The polychromy, an indivisible part of polychrome sculpture, holds a key role in the interpretation and understanding of these artworks. Unlike in other painted artworks, the study of polychromies is repeatedly hampered by repaints and degradation. The omnipresence of lead white within the original polychromy was thus pursued as dating proxy. Thermal decomposition allowed bypassing geologic carbonate interferences caused by the object's support material, while an added solvent extraction successfully removed conservation products. This radiocarbon dating survey of the polychromy from 16 Portuguese medieval limestone sculptures confirmed that some were produced within the proposed chronologies while others were revised. Within this multidisciplinary study, the potential of radiocarbon dating as a complementary source of information about these complex paint systems guiding their interpretation is demonstrated. The challenges of this innovative approach are highlighted and improvements on sampling and sample preparation are discussed.

2.
Anal Chem ; 92(11): 7674-7682, 2020 06 02.
Article in English | MEDLINE | ID: mdl-32396364

ABSTRACT

Lead white is known as one of the oldest pigments in art and can be used as a dating material. Upon production following the Stack process, the 14C isotope of atmospheric carbon dioxide is fixed in the carbonate, and its radiocarbon dating can be used as a proxy for the age of a painting. The previously reported carbonate hydrolysis protocol reaches its limitation when confronted with samples presenting a mixture of carbonates, such as lead carbonate (cerussite or hydrocerussite), calcium carbonate (calcite), and/or calcium magnesium carbonate (dolomite). Thermogravimetric analyses indicate that decomposition of lead carbonate can be achieved at 350 °C in TGA diagrams, as other mineral carbonates only decompose to carbon dioxide at temperatures above 700 °C. Thus, a thermal approach is proposed to separate the various carbonates and isolate the specific 14C signature to the lead carbonate. In practice, however, discrepancies between the measured radiocarbon ages and expected ages were observed. FTIR analyses pointed to the formation of metal carboxylates, an indicator that the organic binder is not inert and plays a role in the dating strategy. Upon drying, oxidation and hydrolysis take place leading to the formation of free fatty acids, which in turn interact with the different carbonates upon heating. Their removal was achieved by introduction of a solvent extraction step prior to the thermal treatment, which was confirmed by GC-MS analyses, and thus, the collected carbon dioxide at 350 °C results can be assigned correctly to the decomposition of the lead white pigment. The proposed procedure was furthermore verified on mixed carbonate-bearing paint samples collected from a Baroque oil painting.

3.
Analyst ; 145(4): 1310-1318, 2020 Feb 17.
Article in English | MEDLINE | ID: mdl-31935004

ABSTRACT

Isotopic studies are gaining much interest in heritage science, as they can provide insight into a material's age and provenance. Radiocarbon (14C) dating affords a time frame for the materials being studied, thus providing a historical context, whereas the specific pattern of lead isotope ratios may be used to set geographical constraints on the source of the original materials. Both methods require invasive sampling from the object, and henceforth limits their respective application. With the focus on lead white paint (2PbCO3·Pb(OH)2), in this study we extract the time of production of the pigment from the carbonate anion by radiocarbon dating while its origin is traced by lead isotope analysis on the cation. The methodology was applied to 12 British and 8 Swiss paintings from the 18th to 20th century, with known dates and provenance. The 14C analysis of the lead white in combination with the organic binder and canvas alone places all objects between the 17th and 20th centuries, which is in agreement with their signed date, wheras the lead isotope analysis of all samples are consistent with lead ores from European deposits. In most of the cases the combined results are consistent with the art historical data and prove that isotope analysis is intrinsic to the object. This feasibility study conducted on paintings of known age demonstrates the possibility to maximize the information output from lead white paint, thus increasing the benefits of a single sampling.

4.
Proc Natl Acad Sci U S A ; 116(27): 13210-13214, 2019 07 02.
Article in English | MEDLINE | ID: mdl-31160460

ABSTRACT

Art forgeries have existed since antiquity, but with the recent rapidly expanding commercialization of art, the approach to art authentication has demanded increasingly sophisticated detection schemes. So far, the most conclusive criterion in the field of counterfeit detection is the scientific proof of material anachronisms. The establishment of the earliest possible date of realization of a painting, called the terminus post quem, is based on the comparison of materials present in an artwork with information on their earliest date of discovery or production. This approach provides relative age information only and thus may fail in proving a forgery. Radiocarbon (14C) dating is an attractive alternative, as it delivers absolute ages with a definite time frame for the materials used. The method, however, is invasive and in its early days required sampling tens of grams of material. With the advent of accelerator mass spectrometry (AMS) and further development of gas ion sources (GIS), a reduction of sample size down to microgram amounts of carbon became possible, opening the possibility to date individual paint layers in artworks. Here we discuss two microsamples taken from an artwork carrying the date of 1866: a canvas fiber and a paint chip (<200 µg), each delivering a different radiocarbon response. This discrepancy uncovers the specific strategy of the forger: Dating of the organic binder delivers clear evidence of a post-1950 creation on reused canvas. This microscale 14C analysis technique is a powerful method to reveal technically complex forgery cases with hard facts at a minimal sampling impact.

SELECTION OF CITATIONS
SEARCH DETAIL
...