Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Oncoimmunology ; 12(1): 2207868, 2023.
Article in English | MEDLINE | ID: mdl-37180637

ABSTRACT

Typically, anticancer CD8pos T cells occur at low frequencies and become increasingly impaired in the tumor micro environment. In contrast, antiviral CD8pos T cells display a much higher polyclonality, frequency, and functionality. In particular, cytomegalovirus (CMV) infection induces high numbers of 'inflationary' CD8pos T cells that remain lifelong abundantly present in CMV-seropositive subjects. Importantly, these so-called inflationary anti-CMV T cells increase with age, maintain a ready-to-go state, populate tumors, and do not become exhausted or senescent. Given these favorable attributes, we devised a novel series of recombinant Fab-peptide-HLA-I fusion proteins and coined them 'ReTARGs'. A ReTARG fusion protein consists of a high-affinity Fab antibody fragment directed to carcinoma-associated cell surface antigen EpCAM (or EGFR), fused in tandem with soluble HLA-I molecule/ß2-microglobulin, genetically equipped with an immunodominant peptide derived from CMV proteins pp65 (or IE-1). Decoration with EpCAM-ReTARGpp65 rendered EpCAM-expressing primary patient-derived carcinoma cells highly sensitive to selective elimination by cognate anti-CMV CD8pos T cells. Importantly, this treatment did not induce excessive levels of proinflammatory T cell-secreted IFNγ. In contrast, analogous treatment with equimolar amounts of EpCAM/CD3-directed bispecific T-cell engager solitomab resulted in a massive release of IFNγ, a feature commonly associated with adverse cytokine-release syndrome. Combinatorial treatment with EpCAM-ReTARGpp65 and EGFR-ReTARGIE-1 strongly potentiated selective cancer cell elimination owing to the concerted action of the corresponding cognate anti-CMV CD8pos T cell clones. In conclusion, ReTARG fusion proteins may be useful as an alternative or complementary form of targeted cancer immunotherapy for 'cold' solid cancers.


Subject(s)
Cytomegalovirus Infections , Cytomegalovirus , Humans , Epithelial Cell Adhesion Molecule , Cytomegalovirus/genetics , Cytomegalovirus/metabolism , T-Lymphocytes , Interferon-gamma , ErbB Receptors
2.
Oncoimmunology ; 10(1): 2005344, 2021.
Article in English | MEDLINE | ID: mdl-34858730

ABSTRACT

Cancer cells exploit CD47 overexpression to inhibit phagocytic elimination and neoantigen processing via the myeloid CD47-SIRPα axis and thereby indirectly evade adaptive T cell immunity. Here, we report on a hitherto unrecognized direct immunoinhibitory feature of cancer cell-expressed CD47. We uncovered that in response to IFNγ released during cognate T cell immune attack, cancer cells dynamically enhance CD47 cell surface expression, which coincides with acquiring adaptive immune resistance toward pro-apoptotic effector T cell mechanisms. Indeed, CRISPR/Cas9-mediated CD47-knockout rendered cancer cells more sensitive to cognate T cell immune attack. Subsequently, we developed a cancer-directed strategy to selectively overcome CD47-mediated adaptive immune resistance using bispecific antibody (bsAb) CD47xEGFR-IgG2s that was engineered to induce rapid and prolonged cancer cell surface displacement of CD47 by internalization. Treatment of CD47pos cancer cells with bsAb CD47xEGFR-IgG2s potently enhanced susceptibility to cognate CD8pos T cells. Targeting CD47-mediated adaptive immune resistance may open up new avenues in cancer immunotherapy.


Subject(s)
Antibodies, Bispecific , Neoplasms , CD47 Antigen/genetics , Humans , Immunotherapy , T-Lymphocytes
3.
Cancer Lett ; 521: 109-118, 2021 Aug 28.
Article in English | MEDLINE | ID: mdl-34464670

ABSTRACT

Tumor-derived extracellular vesicles (EVs) carry potent immunosuppressive factors that affect the antitumor activities of immune cells. A significant part of the immunoinhibitory activity of EVs is attributable to CD73, a GPI-anchored ecto-5'-nucleotidase involved in the conversion of tumor-derived proinflammatory extracellular ATP (eATP) to immunosuppressive adenosine (ADO). The CD73-antagonist antibody oleclumab inhibits cell surface-exposed CD73 and is currently undergoing clinical testing for cancer immunotherapy. However, a strategy to selectively inhibit CD73 exposed on EVs is not available. Here, we present a novel bispecific antibody (bsAb) CD73xEpCAM designed to bind with high affinity the common EV surface marker EpCAM and concurrently inhibit CD73. Unlike oleclumab, bsAb CD73xEpCAM potently inhibited the immunosuppressive activity of EVs from CD73pos/EpCAMpos carcinoma cell lines and patient-derived colorectal cancer cells. Taken together, selective blockade of EV-exposed CD73 by bsAb CD73xEpCAM may be useful as an alternate or complementary targeted approach in cancer immunotherapy.

4.
Oncoimmunology ; 9(1): 1824323, 2020 09 29.
Article in English | MEDLINE | ID: mdl-33299654

ABSTRACT

Cancer cells overexpress CD47 to subvert phagocytic elimination and evade immunogenic processing of cancer antigens. Moreover, CD47 overexpression inhibits the antibody-dependent cellular phagocytosis (ADCP) and cytotoxicity (ADCC) activities of therapeutic anticancer antibodies. Consequently, CD47-blocking antibodies have been developed to overcome the immunoevasive activities of cancer cell-expressed CD47. However, the wide-spread expression of CD47 on normal cells forms a massive "antigen sink" that potentially limits sufficient tumor accretion of these antibodies. Additionally, a generalized blockade of CD47-SIRPα interaction may ultimately lead to unintended cross-presentation of self-antigens potentially promoting autoimmunity. To address these issues, we constructed a bispecific antibody, designated bsAb CD47xEGFR-IgG1, that blocks cancer cell surface-expressed CD47 in an EGFR-directed manner. BsAb CD47xEGFR-IgG1 selectively induced phagocytic removal of EGFRpos/CD47pos cancer cells and endowed neutrophils with capacity to kill these cancer cells by trogoptosis; an alternate form of ADCC that disrupts the target cell membrane. Importantly, bsAb CD47xEGFR-IgG1 selectively enhanced phagocytosis and immunogenic processing of EGFRpos/CD47pos cancers cells ectopically expressing viral protein CMVpp65. In conclusion, bsAb CD47xEGFR-IgG1 may be useful to reduce on-target/off-tumor effects of CD47-blocking approaches, enhance cancer cell elimination by trogoptosis, and promote adaptive anticancer immune responses.


Subject(s)
Antibodies, Bispecific , CD47 Antigen , Antibodies, Bispecific/pharmacology , Antigens, Differentiation , Cross-Priming , ErbB Receptors , Neutrophils , Receptors, Immunologic
5.
J Invest Dermatol ; 139(11): 2343-2351.e3, 2019 11.
Article in English | MEDLINE | ID: mdl-31128201

ABSTRACT

Reactivation of functionally-impaired anticancer T cells by programmed cell death protein 1 (PD-1) and programmed cell death receptor ligand-1 (PD-L1)-blocking antibodies shows prominent therapeutic benefit in advanced melanoma and patients with non-small cell lung cancer. However, current PD-L1-blocking antibodies lack intrinsic tumor selectivity. Therefore, efficacy may be reduced resulting from on-target and off-tumor binding to PD-L1-expressing normal cells. This may lead to indiscriminate activation of antigen-experienced T cells, including those implicated in autoimmune-related adverse events. To direct PD-L1 blockade to chondroitin sulfate proteoglycan 4 (CSPG4)-expressing cancers and to reactivate anticancer T cells more selectively, we constructed bispecific antibody PD-L1xCSPG4. CSPG4 is an established target antigen that is selectively overexpressed on malignant melanoma and various other difficult-to-treat cancers. PD-L1xCSPG4 showed enhanced capacity for CSPG4-directed blockade of PD-L1 on cancer cells. Importantly, treatment of mixed cultures containing primary patient-derived CSPG4-expressing melanoma cells and autologous tumor-infiltrating lymphocytes with PD-L1xCSPG4 significantly enhanced activation status, IFN-γ production, and cytolytic activity of anticancer T cells. In conclusion, tumor-directed blockade of PD-L1 by PD-L1xCSPG4 may improve efficacy and safety of PD-1/PD-L1 checkpoint blockade for treatment of melanoma and other CSPG4-overexpressing malignancies.


Subject(s)
Antibodies, Bispecific/pharmacology , Antineoplastic Agents, Immunological/pharmacology , Immunotherapy/methods , Lymphocytes, Tumor-Infiltrating/immunology , Melanoma/therapy , T-Lymphocytes/immunology , Antibodies, Bispecific/genetics , Antigens/immunology , Antigens, Neoplasm/immunology , B7-H1 Antigen/immunology , Cell Line, Tumor , Cell Proliferation , Cytotoxicity, Immunologic , Epitopes , Humans , Interferon-gamma/metabolism , Lymphocyte Activation , Lymphocyte Culture Test, Mixed , Melanoma/immunology , Protein Engineering , Proteoglycans/immunology
6.
Oncoimmunology ; 7(2): e1386361, 2018.
Article in English | MEDLINE | ID: mdl-29308308

ABSTRACT

Here, we report on a novel bispecific antibody-derivative, designated RTX-CD47, with unique capacity for CD20-directed inhibition of CD47-SIRPα "don't eat me" signaling. RTX-CD47 comprises a CD20-targeting scFv antibody fragment derived from rituximab fused in tandem to a CD47-blocking scFv. Single agent treatment with RTX-CD47 triggered significant phagocytic removal of CD20pos/CD47pos malignant B-cells, but not of CD20neg/CD47pos cells, and required no pro-phagocytic FcR-mediated signaling. Importantly, treatment with RTX-CD47 synergistically enhanced the phagocytic elimination of primary malignant B cells by autologous phagocytic effector cells as induced by therapeutic anticancer antibodies daratumumab (anti-CD38), alemtuzumab (anti-CD52) and obinutuzumab (anti-CD20). In conclusion, RTX-CD47 blocks CD47 "don't eat me" signaling by cancer cells in a CD20-directed manner with essentially no activity towards CD20neg/CD47pos cells and enhances the activity of therapeutic anticancer antibodies directed to B-cell malignancies.

SELECTION OF CITATIONS
SEARCH DETAIL
...