Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
1.
Target Oncol ; 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890221

ABSTRACT

BACKGROUND: The antibody-drug conjugate sacituzumab govitecan is approved for metastatic triple-negative breast cancer and has shown promising results in various other types of cancer. Its costs may limit patient access to this novel effective treatment modality. OBJECTIVE: The purpose of this study was to develop an evidence-based rational dosing regimen that results in targeted drug exposure within the therapeutic range while minimizing financial toxicity, to improve treatment access. PATIENTS AND METHODS: Exposure equivalent dosing strategies were developed based on pharmacokinetic modeling and simulation by using the published pharmacokinetic model developed by the license holder. The alternative dose was based on the principle of using complete vials to prevent spillage and on the established non-linear relationship between body weight and systemic exposure. Equivalent exposure compared to the approved dosing regimen of 10 mg/kg was aimed for. Equivalent exposure was conservatively defined as calculated geometric mean ratios within the 0.9-1.11 boundaries for area under the concentration-time curve (AUC), trough concentration (Ctrough) and maximum concentration (Cmax) of the alternative dosing regimen compared to the approved dosing regimen. Since different vial sizes are available for the European Union (EU) and United States (US) market, because body weight distributions differ between these populations, we performed our analysis for both scenarios. RESULTS: Dosing regimens of sacituzumab govitecan for the EU (< 50 kg: 400 mg, 50-80 kg: 600 mg, and > 80 kg: 800 mg) and US population (< 40 kg: 360 mg, 40-65 kg: 540 mg, 65-90 kg: 720 mg, and > 90 kg: 900 mg) were developed, based on weight bands. The geometric mean ratios for all pharmacokinetic outcomes were within the predefined equivalence boundaries, while the quantity of drug used was 21.5% and 19.0% lower for the EU and US scenarios, respectively. CONCLUSIONS: With the alternative dosing proposal, an approximately 20% reduction in drug expenses for sacituzumab govitecan can be realized while maintaining an equivalent and more evenly distributed exposure throughout the body weight range, without notable increases in pharmacokinetic variability.

2.
J Nucl Med Technol ; 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38901965

ABSTRACT

The radiation exposure of the hands of nuclear medicine laboratory technicians is largely due to the dispensing of radiopharmaceuticals into syringes. To reduce this exposure, a multiradionuclide automatic dispensing system (ADS) for syringes of radiopharmaceuticals was introduced. The aim of this study was to determine the effect of this ADS on hand dose compared with manual dispensing. Methods: The total hand dose per month for all personnel (12 technicians) was measured with ring dosimeters at the base of the index finger for 13 mo: 7 mo with manual syringe dispensing (radiopharmaceuticals containing 99mTc,18F, 177Lu, 68Ga, 90Y, and 223Ra) and 6 mo with ADS (automatic: radiopharmaceuticals containing 18F and 177Lu; manual: radiopharmaceuticals containing 99mTc, 68Ga, 90Y, and 223Ra). Results: The mean total hand dose per month was reduced from 52.8 ± 10.2 mSv with manual dispensing to 21.9 ± 2.7 mSv with ADS (P < 0.001), which is an absolute decrease of 59%. Meanwhile, the total handled activity increased from 369 to 505 GBq (P < 0.001). 18F-containing radiopharmaceuticals were the most commonly dispensed, at 182 GBq per month. The increase in total handled activity was largely due to an increase in 177Lu (from 25 to 123 GBq), partially because of the introduction of [177Lu]Lu-PSMA-I&T. When correcting for this increase in handled activity, the hand dose was reduced by 69%. Conclusion: The introduction of a multiradionuclide syringe ADS decreased the hand dose to personnel by 69% when corrected for the increase in handled activity. Expanding the number of radiopharmaceuticals being dispensed by the system could potentially further decrease personnel hand dose.

3.
EJNMMI Radiopharm Chem ; 9(1): 31, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38632189

ABSTRACT

BACKGROUND: Steps have been taken by pharmaceutical companies to obtain marketing authorisation of PSMA ligands in the European Union. Since December 2022, Locametz® (PSMA-11, gozetotide) is licensed as kit for manual radiolabelling with gallium-68 and commercially available since mid-2023. The Summary of Product Characteristic (SmPC) describes manual radiolabelling with a maximum activity after radiolabelling of 1369 MBq. We aimed for radiolabelling with a higher activity to increase production efficiency, and thus, automated radiolabelling is strongly preferred over manual radiolabelling to reduce radiation exposure to personnel. The aim of this study was to develop and validate a method for automated radiolabelling of the Locametz® kit using ~ 2000 MBq of gallium-68 eluate for radiolabelling. RESULTS: Automated radiolabelling of [68Ga]Ga-PSMA-11 using the Locametz® kit provided a product which complies to the Ph. Eur., had a shelf-life of 6 h at room temperature, and theoretically reduced radiation exposure 5.7 times. Radiolabelling with one and two generator(s) resulted in a radiochemical yield of 91-102% and 96-101% after preparation, respectively. The radiochemical purity ranged from 98.0 to 99.6% for radiolabelling with one generator and ranged from 98.4 to 99.3% for radiolabelling with two generators with similar stability. The activity of the final product was much higher when using two generators, 1961-2035 MBq compared to 740-1260 MBq, which leads to ~ 1.5 times more patient syringes available per preparation. CONCLUSION: Automated radiolabelling of [68Ga]Ga-PSMA-11 using the Locametz® kit with higher gallium-68 activity than specified in the SmPC results in a product that is in compliance with the Ph. Eur. monograph and has a shelf-life of 6 h at room temperature. Radiolabelling with two generators proved possible and resulted in a product with similar quality but with much higher efficiency.

4.
EJNMMI Phys ; 11(1): 39, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38656678

ABSTRACT

BACKGROUND: There is an unmet need for prediction of treatment outcome or patient selection for [177Lu]Lu-PSMA therapy in patients with metastatic castration-resistant prostate cancer (mCRPC). Quantification of the tumor exposure-response relationship is pivotal for further treatment optimization. Therefore, a population pharmacokinetic (PK) model was developed for [177Lu]Lu-PSMA-I&T using SPECT/CT data and, subsequently, related to prostate-specific antigen (PSA) dynamics after therapy in patients with mCRPC using a pharmacokinetic/pharmacodynamic (PKPD) modelling approach. METHODS: A population PK model was developed using quantitative SPECT/CT data (406 scans) of 76 patients who received multiple cycles [177Lu]Lu-PSMA-I&T (± 7.4 GBq with either two- or six-week interval). The PK model consisted of five compartments; central, salivary glands, kidneys, tumors and combined remaining tissues. Covariates (tumor volume, renal function and cycle number) were tested to explain inter-individual variability on uptake into organs and tumors. The final PK model was expanded with a PD compartment (sequential fitting approach) representing PSA dynamics during and after treatment. To explore the presence of a exposure-response relationship, individually estimated [177Lu]Lu-PSMA-I&T tumor concentrations were related to PSA changes over time. RESULTS: The population PK model adequately described observed data in all compartments (based on visual inspection of goodness-of-fit plots) with adequate precision of parameters estimates (< 36.1% relative standard error (RSE)). A significant declining uptake in tumors (k14) during later cycles was identified (uptake decreased to 73%, 50% and 44% in cycle 2, 3 and 4-7, respectively, compared to cycle 1). Tumor growth (defined by PSA increase) was described with an exponential growth rate (0.000408 h-1 (14.2% RSE)). Therapy-induced PSA decrease was related to estimated tumor concentrations (MBq/L) using both a direct and delayed drug effect. The final model adequately captured individual PSA concentrations after treatment (based on goodness-of-fit plots). Simulation based on the final PKPD model showed no evident differences in response for the two different dosing regimens currently used. CONCLUSIONS: Our population PK model accurately described observed [177Lu]Lu-PSMA-I&T uptake in salivary glands, kidneys and tumors and revealed a clear declining tumor uptake over treatment cycles. The PKPD model adequately captured individual PSA observations and identified population response rates for the two dosing regimens. Hence, a PKPD modelling approach can guide prediction of treatment response and thus identify patients in whom radioligand therapy is likely to fail.

5.
Clin Nucl Med ; 49(5): 454-456, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38465961

ABSTRACT

ABSTRACT: Extravasation of the radiopharmaceutical during peptide receptor radionuclide therapy infusion is an unwanted infrequently reported event. We present the case of a 74-year old woman with a neuroendocrine tumor who was referred for peptide receptor radionuclide therapy. During intravenous infusion of 7.4 GBq [ 177 Lu]Lu-HA-DOTATATE in the upper right arm, extravasation of the radiopharmaceutical occurred through a displaced intravenous catheter. Planar scintigraphy showed pooling of radioactivity in the right upper arm. After 24 hours, the swelling in the arm was decreased; however, erythema was increased. One week later, symptoms had disappeared, and the patient did not experience any complications during follow-up of 11 months.


Subject(s)
Lutetium , Neuroendocrine Tumors , Organometallic Compounds , Positron-Emission Tomography , Radionuclide Imaging , Female , Humans , Aged , Radiopharmaceuticals , Octreotide/adverse effects , Radioisotopes , Neuroendocrine Tumors/diagnostic imaging , Neuroendocrine Tumors/radiotherapy , Receptors, Peptide , Organometallic Compounds/adverse effects
6.
BJU Int ; 134(1): 81-88, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38346924

ABSTRACT

OBJECTIVE: To investigate whether combination treatment of prostate-specific membrane antigen (PSMA)-based radioguided surgery (RGS) with short-term androgen deprivation therapy (ADT) improves oncological outcomes in men with oligorecurrent prostate cancer (PCa) as compared to treatment with short-term ADT only. METHODS: The TRACE-II study is an investigator-initiated, prospective, randomised controlled clinical trial. Patients (aged >18 years) with hormone-sensitive recurrent PCa after radical prostatectomy or radiotherapy (brachytherapy or external beam radiotherapy), with involvement of ≤2 lymph nodes or local oligorecurrent disease within the pelvis as determined by PSMA positron emission tomography (PET)/computed tomography (CT) are randomly assigned in a 1:1 ratio between 6-month ADT (Arm A) or 6-month ADT plus RGS (Arm B). The primary objective is to determine clinical progression-free survival (CPFS) at 24 months. After PSMA-RGS, CPFS is defined as the time between the start of treatment and the appearance of a re-recurrence (any N1 or M1) as suggested by PSMA-PET/CT or symptoms related to progressive PCa, or death from any cause. The secondary objectives include metastasis-free survival at 2, 5 and 10 years, biochemical progression-free survival at 2 years, and patient-reported quality of life at 2, 5 and 10 years. A total of 60 patients, 30 per arm, will be included. The trial is powered (80%) to detect at least a 30% absolute difference in CPFS between the two study arms in the period 2 years after randomisation. We expect to enrol the required participants in 3 years. The study has an expected duration of 5 years in total. CONCLUSIONS: Combining RGS with short-term ADT might be oncologically beneficial for patients with oligorecurrent PCa. In this first randomised controlled trial, we are investigating the potential oncological benefits of this combined treatment, while also focusing on maintaining quality of life.


Subject(s)
Neoplasm Recurrence, Local , Prostatic Neoplasms , Humans , Male , Prostatic Neoplasms/surgery , Prostatic Neoplasms/therapy , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/pathology , Prospective Studies , Surgery, Computer-Assisted/methods , Radiopharmaceuticals/therapeutic use , Prostatectomy/methods , Positron Emission Tomography Computed Tomography/methods , Androgen Antagonists/therapeutic use , Glutamate Carboxypeptidase II/metabolism , Aged , Middle Aged
7.
EJNMMI Radiopharm Chem ; 8(1): 35, 2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37889361

ABSTRACT

BACKGROUND: The Editorial Board of EJNMMI Radiopharmacy and Chemistry releases a biannual highlight commentary to update the readership on trends in the field of radiopharmaceutical development. MAIN BODY: This selection of highlights provides commentary on 21 different topics selected by each coauthoring Editorial Board member addressing a variety of aspects ranging from novel radiochemistry to first-in-human application of novel radiopharmaceuticals. CONCLUSION: Trends in radiochemistry and radiopharmacy are highlighted. Hot topics cover the entire scope of EJNMMI Radiopharmacy and Chemistry, demonstrating the progress in the research field in many aspects.

8.
EJNMMI Phys ; 10(1): 48, 2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37615812

ABSTRACT

BACKGROUND: Prediction of [177Lu]Lu-HA-DOTATATE kidney and tumor uptake based on diagnostic [68Ga]Ga-HA-DOTATATE imaging would be a crucial step for precision dosing of [177Lu]Lu-HA-DOTATATE. In this study, the population pharmacokinetic (PK) differences between [177Lu]Lu-HA-DOTATATE and [68Ga]Ga-HA-DOTATATE were assessed and subsequently [177Lu]Lu-HA-DOTATATE was predicted based on [68Ga]Ga-HA-DOTATATE imaging. METHODS: A semi-physiological nonlinear mixed-effects model was developed for [68Ga]Ga-HA-DOTATATE and [177Lu]Lu-HA-DOTATATE, including six compartments (representing blood, spleen, kidney, tumor lesions, other somatostatin receptor expressing organs and a lumped rest compartment). Model parameters were fixed based on a previously developed physiologically based pharmacokinetic model for [68Ga]Ga-HA-DOTATATE. For [177Lu]Lu-HA-DOTATATE, PK parameters were based on literature values or estimated based on scan data (four time points post-injection) from nine patients. Finally, individual [177Lu]Lu-HA-DOTATATE uptake into tumors and kidneys was predicted based on individual [68Ga]Ga-HA-DOTATATE scan data using Bayesian estimates. Predictions were evaluated compared to observed data using a relative prediction error (RPE) for both area under the curve (AUC) and absorbed dose. Lastly, to assess the predictive value of diagnostic imaging to predict therapeutic exposure, individual prediction RPEs (using Bayesian estimation) were compared to those from population predictions (using the population model). RESULTS: Population uptake rate parameters for spleen, kidney and tumors differed by a 0.29-fold (15% relative standard error (RSE)), 0.49-fold (15% RSE) and 1.43-fold (14% RSE), respectively, for [177Lu]Lu-HA-DOTATATE compared to [68Ga]Ga-HA-DOTATATE. Model predictions adequately described observed data in kidney and tumors for both peptides (based on visual inspection of goodness-of-fit plots). Individual predictions of tumor uptake were better (RPE AUC -40 to 28%) compared to kidney predictions (RPE AUC -53 to 41%). Absorbed dose predictions were less predictive for both tumor and kidneys (RPE tumor and kidney -51 to 44% and -58 to 82%, respectively). For most patients, [177Lu]Lu-HA-DOTATATE tumor accumulation predictions based on individual PK parameters estimated from diagnostic imaging outperformed predictions based on population parameters. CONCLUSION: Our semi-physiological PK model indicated clear differences in PK parameters for [68Ga]Ga-HA-DOTATATE and [177Lu]Lu-HA-DOTATATE. Diagnostic images provided additional information to individually predict [177Lu]Lu-HA-DOTATATE tumor uptake compared to using a population approach. In addition, individual predictions indicated that many aspects, apart from PK differences, play a part in predicting [177Lu]Lu-HA-DOTATATE distribution.

9.
EJNMMI Res ; 13(1): 60, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37318681

ABSTRACT

BACKGROUND: Folate intake might reduce [68Ga]Ga-PSMA-11 uptake in tissues due to a competitive binding to the PSMA receptor. For diagnostic imaging, this could impact decision making, while during radioligand therapy this could affect treatment efficacy. The relationship between folate dose, timing of dosing and tumor and organ uptake is not well established. The aim of this study was to develop a physiologically based pharmacokinetic (PBPK) model to predict the effect of folates on [68Ga]Ga-PSMA-11 PET/CT uptake in salivary glands, kidneys and tumors. METHODS: A PBPK model was developed for [68Ga]Ga-PSMA-11 and folates (folic acid and its metabolite 5-MTHF), with compartments added that represent salivary glands and tumor. Reactions describing receptor binding, internalization and intracellular degradation were included. Model evaluation for [68Ga]Ga-PSMA-11 was performed by using patient scan data from two different studies (static and dynamic), while for folates data from the literature were used for evaluation. Simulations were performed to assess the effect of different folate doses (150 µg, 400 µg, 5 mg and 10 mg) on accumulation in salivary glands, kidney and tumor, also for patients with different tumor volumes (10, 100, 500 and 1000 mL). RESULTS: Final model evaluation showed that predictions adequately described data for both [68Ga]Ga-PSMA-11 and folates. Predictions of a 5-MTFH dose of 150 µg and folic acid dose of 400 µg (in case of administration at the same time as [68Ga]Ga-PSMA-11 (t = 0)) showed no clinically relevant effect on salivary glands and kidney uptake. However, the effect of a decrease in salivary glands and kidney uptake was determined to be clinically relevant for doses of 5 mg (34% decrease for salivary glands and 32% decrease for kidney) and 10 mg (36% decrease for salivary glands and 34% decrease for kidney). Predictions showed that tumor uptake was not relevantly affected by the co-administration of folate for all different folate doses (range 150 µg-10 mg). Lastly, different tumor volumes did not impact the folate effect on [68Ga]Ga-PSMA-11 biodistribution. CONCLUSION: Using a PBPK model approach, high doses of folate (5 and 10 mg) were predicted to show a decrease of [68Ga]Ga-PSMA-11 salivary glands and kidney uptake, while intake by means of folate containing food or vitamin supplements showed no relevant effects. In addition, tumor uptake was not affected by folate administration in the simulated dose ranges (150 µg-10 mg). Differences in tumor volume are not expected to impact folate effects on [68Ga]Ga-PSMA-11 organ uptake.

10.
J Oncol Pharm Pract ; : 10781552231176199, 2023 May 16.
Article in English | MEDLINE | ID: mdl-37192749

ABSTRACT

INTRODUCTION: Increasing use of expensive oral anticancer medicines comes with the downside of a financial and environmental burden, partially caused by unused medication. Returned oral anticancer medicine to the pharmacy could be considered for redispensing providing guaranteed quality. This study aimed to identify and implement quality aspects and criteria for redispensing oral anticancer medicine in daily pharmacy practice. METHODS: A systematic analysis was conducted to determine the eligibility of oral anticancer medicine for redispensing. Over a one-year period, the number of returned oral anticancer medicine accepted for redispensing was quantified, and the reduction in financial waste and environmental burden calculated based on this assessment. RESULTS: Four categories of quality aspects were identified for determining the eligibility of oral anticancer medicine for redispensing: Product presentation suitability (stability characteristics, storage requirements), physical condition (unopened or opened secondary or primary packaging, visual appearance), authentication (Falsified Medicines Directive, confirmation of initial dispense, recall), and additional aspects (remaining shelf life, period of storage in uncontrolled conditions). A standardized procedure for redispensing was implemented in daily pharmacy practice. During the study period, 10,415 oral anticancer medicine dose units out of 13,210 returns (79%) were accepted for redispensing. The total value of oral anticancer medicine accepted for redispensing was €483,301, accounting for 0.9% of the total value dispensed during this period. Furthermore, the potential reduction in environmental burden was estimated at 1132.1 g of potent active pharmaceutical ingredient. CONCLUSIONS: By implementing strict procedures considering all relevant quality aspects, redispensing of oral anticancer medicine can be successfully implemented into daily pharmacy practice, resulting in a significant reduction in financial waste and environmental burden.

11.
Target Oncol ; 18(3): 441-450, 2023 05.
Article in English | MEDLINE | ID: mdl-37081309

ABSTRACT

BACKGROUND: Expensive novel anticancer drugs put a serious strain on healthcare budgets, and the associated drug expenses limit access to life-saving treatments worldwide. OBJECTIVE: We aimed to develop alternative dosing regimens to reduce drug expenses. METHODS: We developed alternative dosing regimens for the following monoclonal antibodies used for the treatment of lung cancer: amivantamab, atezolizumab, bevacizumab, durvalumab, ipilimumab, nivolumab, pembrolizumab, and ramucirumab; and for the antibody-drug conjugate trastuzumab deruxtecan. The alternative dosing regimens were developed by means of modeling and simulation based on the population pharmacokinetic models developed by the license holders. They were based on weight bands and the administration of complete vials to limit drug wastage. The resulting dosing regimens were developed to comply with criteria used by regulatory authorities for in silico dose development. RESULTS: We found that alternative dosing regimens could result in cost savings that range from 11 to 28%, and lead to equivalent pharmacokinetic exposure with no relevant increases in variability in exposure. CONCLUSIONS: Dosing regimens based on weight bands and the use of complete vials to reduce drug wastage result in less expenses while maintaining equivalent exposure. The level of evidence of our proposal is the same as accepted by regulatory authorities for the approval of alternative dosing regimens of other monoclonal antibodies in oncology. The proposed alternative dosing regimens can, therefore, be directly implemented in clinical practice.


Subject(s)
Antineoplastic Agents , Immunoconjugates , Lung Neoplasms , Humans , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Nivolumab , Immunoconjugates/pharmacology , Immunoconjugates/therapeutic use , Lung Neoplasms/drug therapy
12.
BMC Cancer ; 23(1): 268, 2023 Mar 23.
Article in English | MEDLINE | ID: mdl-36959540

ABSTRACT

BACKGROUND: Prostate cancer patients with locoregional lymph node disease at diagnosis (N1M0) still have a limited prognosis despite the improvements provided by aggressive curative intent multimodal locoregional external beam radiation therapy (EBRT) with systemic androgen deprivation therapy (ADT). Although some patients can be cured and the majority of patients have a long survival, the 5-year biochemical failure rate is currently 29-47%. [177Lu]Lu-PSMA-617 has shown impressive clinical and biochemical responses with low toxicity in salvage setting in metastatic castration-resistant prostate cancer. This study aims to explore the combination of standard EBRT and ADT complemented with a single administration of [177Lu]Lu-PSMA-617 in curative intent treatment for N1M0 prostate cancer. Hypothetically, this combined approach will enhance EBRT to better control macroscopic tumour localizations, and treat undetected microscopic disease locations inside and outside EBRT fields. METHODS: The PROQURE-I study is a multicenter prospective phase I study investigating standard of care treatment (7 weeks EBRT and 3 years ADT) complemented with one concurrent cycle (three, six, or nine GBq) of systemic [177Lu]Lu-PSMA-617 administered in week two of EBRT. A maximum of 18 patients with PSMA-positive N1M0 prostate cancer will be included. The tolerability of adding [177Lu]Lu-PSMA-617 will be evaluated using a Bayesian Optimal Interval (BOIN) dose-escalation design. The primary objective is to determine the maximum tolerated dose (MTD) of a single cycle [177Lu]Lu-PSMA-617 when given concurrent with EBRT + ADT, defined as the occurrence of Common Terminology Criteria for Adverse Events (CTCAE) v 5.0 grade three or higher acute toxicity. Secondary objectives include: late toxicity at 6 months, dosimetric assessment, preliminary biochemical efficacy at 6 months, quality of life questionnaires, and pharmacokinetic modelling of [177Lu]Lu-PSMA-617. DISCUSSION: This is the first prospective study to combine EBRT and ADT with [177Lu]Lu-PSMA-617 in treatment naïve men with N1M0 prostate cancer, and thereby explores the novel application of [177Lu]Lu-PSMA-617 in curative intent treatment. It is considered likely that this study will confirm tolerability as the combined toxicity of these treatments is expected to be limited. Increased efficacy is considered likely since both individual treatments have proven high anti-tumour effect as mono-treatments. TRIAL REGISTRATION: ClinicalTrials, NCT05162573 . Registered 7 October 2021.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Quality of Life , Humans , Male , Androgen Antagonists/therapeutic use , Bayes Theorem , Dipeptides/adverse effects , Heterocyclic Compounds, 1-Ring/adverse effects , Prospective Studies , Prostate-Specific Antigen , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/radiotherapy , Treatment Outcome
13.
EJNMMI Res ; 13(1): 8, 2023 Feb 03.
Article in English | MEDLINE | ID: mdl-36735114

ABSTRACT

BACKGROUND: Little is known about parameters that have a relevant impact on (dis)similarities in biodistribution between various 68Ga-labeled somatostatin analogues. Additionally, the effect of tumor burden on organ uptake remains unclear. Therefore, the aim of this study was to describe and compare organ and tumor distribution of [68Ga]Ga-DOTATATE and [68Ga]Ga-HA-DOTATATE using a physiologically based pharmacokinetic (PBPK) model and to identify factors that might cause biodistribution and tumor uptake differences between both peptides. In addition, the effect of tumor burden on peptide biodistribution in gastroenteropancreatic (GEP) neuroendocrine tumor (NET) patients was assessed. METHODS: A PBPK model was developed for [68Ga]Ga-(HA-)DOTATATE in GEP-NET patients. Three tumor compartments were added, representing primary tumor, liver metastases and other metastases. Furthermore, reactions describing receptor binding, internalization and recycling, renal clearance and intracellular degradation were added to the model. Scan data from GEP-NET patients were used for evaluation of model predictions. Simulations with increasing tumor volumes were performed to assess the tumor sink effect. RESULTS: Data of 39 and 59 patients receiving [68Ga]Ga-DOTATATE and [68Ga]Ga-HA-DOTATATE, respectively, were included. Evaluations showed that the model adequately described image-based patient data and that different receptor affinities caused organ uptake dissimilarities between both peptides. Sensitivity analysis indicated that tumor blood flow and blood volume impacted tumor distribution most. Tumor sink predictions showed a decrease in spleen uptake with increasing tumor volume, which seemed clinically relevant for patients with total tumor volumes higher than ~ 550 mL. CONCLUSION: The developed PBPK model adequately predicted tumor and organ uptake for this GEP-NET population. Relevant organ uptake differences between [68Ga]Ga-DOTATATE and [68Ga]Ga-HA-DOTATATE were caused by different affinity profiles, while tumor uptake was mainly affected by tumor blood flow and blood volume. Furthermore, tumor sink predictions showed that for the majority of patients a tumor sink effect is not expected to be clinically relevant.

14.
CPT Pharmacometrics Syst Pharmacol ; 12(8): 1060-1071, 2023 08.
Article in English | MEDLINE | ID: mdl-36760133

ABSTRACT

Studies to evaluate and optimize [177 Lu]Lu-PSMA treatment focus primarily on individual patient data. A population pharmacokinetic (PK) dosimetry model was developed to explore the potential of using imaging data as input for population PK models and to characterize variability in organ and tumor uptake of [177 Lu]Lu-PSMA-617 in patients with low volume metastatic prostate cancer. Simulations were performed to identify the effect of dose adjustments on absorbed doses in salivary glands and tumors. A six-compartment population PK model was developed, consisting of blood, salivary gland, kidneys, liver, tumor, and a lumped compartment representing other tissue (compartment 1-6, respectively), based on data from 10 patients who received [177 Lu]Lu-PSMA-617 (2 cycles, ~ 3 and ~ 6 GBq). Data consisted of radioactivity levels (decay corrected) in blood and tissues (9 blood samples and 5 single photon emission computed tomography/computed tomography scans). Observations in all compartments were adequately captured by individual model predictions. Uptake into salivary glands was saturable with an estimated maximum binding capacity (Bmax ) of 40.4 MBq (relative standard error 12.3%) with interindividual variability (IIV) of 59.3% (percent coefficient of variation [CV%]). IIV on other PK parameters was relatively minor. Tumor volume was included as a structural effect on the tumor uptake rate constant (k15 ), where a two-fold increase in tumor volume resulted in a 1.63-fold increase in k15 . In addition, interoccasion variability on k15 improved the model fit (43.5% [CV%]). Simulations showed a reduced absorbed dose per unit administered activity for salivary glands after increasing radioactivity dosing from 3 to 6 GBq (0.685 Gy/GBq vs. 0.421 Gy/GBq, respectively). All in all, population PK modeling could help to improve future radioligand therapy research.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Radiopharmaceuticals , Male , Humans , Radiopharmaceuticals/pharmacokinetics , Radiopharmaceuticals/therapeutic use , Prostatic Neoplasms, Castration-Resistant/drug therapy , Dipeptides , Prostate-Specific Antigen
15.
Eur J Nucl Med Mol Imaging ; 50(5): 1434-1441, 2023 04.
Article in English | MEDLINE | ID: mdl-36598536

ABSTRACT

PURPOSE: According to IAEA/EANM/SNMMI guidelines, long-acting somatostatin analogues (LA-SSAs) should be discontinued 4-6 weeks prior to peptide receptor radionuclide therapy (PRRT) to prevent somatostatin receptor saturation. The aim of this study was to determine the effect of continued use of long-acting SSAs during PRRT on the uptake of [177Lu]Lu-HA-DOTATATE on SPECT/CT. METHODS: Consecutive patients with neuroendocrine tumours who were treated with PRRT receiving 7.4 GBq of [177Lu]Lu-HA-DOTATATE were included. Patients were divided into 3 groups: (1) control (LA-SSA stopped > 6 weeks prior to PRRT), or continued treatment with (2) long-acting octreotide < 6 weeks prior to PRRT, or (3) long-acting lanreotide < 6 weeks prior to PRRT. The uptake of [177Lu]Lu-HA-DOTATATE was quantified in healthy tissues (spleen, liver, kidneys, bone marrow) and tumour lesions on SPECT/CT performed 24 h after PRRT. A Mann-Whitney U test was used to determine differences in uptake between the long-acting octreotide and long-acting lanreotide groups compared to the control group. RESULTS: Forty-two patients with 135 cycles of PRRT were included: 28 with lanreotide, 50 with octreotide, and 57 cycles without LA-SSAs. Uptake of [177Lu]Lu-HA-DOTATATE was significantly decreased in liver parenchyma in patients with lanreotide (p < 0.001) and in the spleen in patients with either octreotide or lanreotide (both p < 0.001). No differences were observed for uptake in kidneys, bone marrow, and blood pool. Uptake of [177Lu]Lu-HA-DOTATATE in tumours was the same in patients with lanreotide compared to the control (p = 0.862) and in patients with octreotide compared to the control (p = 0.201), independent of tumour location. CONCLUSION: Long-acting octreotide and lanreotide do not interfere with the uptake of [177Lu]Lu-HA-DOTATATE in tumour lesions 24 h post-injection. Uptake in healthy liver parenchyma significantly decreases after lanreotide administration prior to PRRT, while uptake in healthy spleen tissue significantly decreases with both octreotide and lanreotide administration.


Subject(s)
Neuroendocrine Tumors , Organometallic Compounds , Humans , Octreotide/adverse effects , Organometallic Compounds/therapeutic use , Somatostatin/therapeutic use , Receptors, Somatostatin , Neuroendocrine Tumors/pathology
16.
J Nucl Med ; 64(1): 63-68, 2023 01.
Article in English | MEDLINE | ID: mdl-35680416

ABSTRACT

68Ga-labeled prostate-specific membrane antigen (PSMA) is often produced on-site, where usually a fixed amount of peptide is conjugated to the generator eluate. However, fluctuations in specific activity might influence tracer distribution and tumor accumulation. Therefore, our aim was to investigate the potential effect of varying the administered peptide amount on 68Ga-PSMA-11 uptake in tumors using PET/CT in patients with primary prostate cancer (PCa). Additionally, the impact of tumor volume on this potential effect and on accumulation in reference organs was assessed. Methods: The imaging data of 362 men with primary PCa who underwent 68Ga-PSMA-11 PET/CT were retrospectively included. Scans were quantified for normal tissue and primary tumors. Patients were divided into 3 groups based on their tumor volume. Correlation and multivariable linear regression analyses were performed. Results: The median index lesion volume was 9.50 cm3 (range, 0.064-174 cm3). Groups were based on quartiles of prostatic lesion volume: ≤4.11 cm3 (group 1), 4.11-20.6 cm3 (group 2), and ≥20.6 cm3 (group 3). No correlation was found between administered peptide amount and tumor uptake (SUVmean or SUVpeak) for any group, except for a significant correlation for SUVmean in the first group (P = 0.008). Linear regression analysis supported these findings. Conclusion: The amount of administered peptide had no evident effect on 68Ga-PSMA-11 uptake in tumors, except for a significant positive correlation between administered peptide amount and tumor SUVmean for group 1. The findings imply that no receptor saturation occurs in men with primary PCa at peptide levels of about 2.5 µg.


Subject(s)
Positron Emission Tomography Computed Tomography , Prostatic Neoplasms , Male , Humans , Positron Emission Tomography Computed Tomography/methods , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/pathology , Retrospective Studies , Gallium Radioisotopes , Peptides , Edetic Acid
18.
EJNMMI Res ; 12(1): 74, 2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36515683

ABSTRACT

BACKGROUND: Receptor saturation during peptide receptor radionuclide therapy (PRRT) could result in altered [177Lu]Lu-HA-DOTATATE uptake in tumors and organs. Therefore, receptor expression status and effects of different (unlabeled) administered peptide amounts during PRRT need to be evaluated. The aim of this study was to assess potential receptor saturation during PRRT by comparing organ and tumor uptake after administration of [177Lu]Lu-HA-DOTATATE with low, standard and high administered peptide amounts in patients with advanced metastatic neuroendocrine tumors (NETs). METHODS: Data of NET patients that received 7.4 GBq 177-Lutetium labeled to a low or high amount of HA-DOTATATE were retrospectively included. From included patients other PRRT cycles, containing standard administered peptide amounts, were included for intra-patient comparison. Uptake quantification was performed for spleen, liver, kidney, bone marrow, blood pool and tumor lesions on post-treatment SPECT/CT scans. A paired Wilcoxon signed-rank test was performed to determine uptake differences between two adjacent cycles for each patient. RESULTS: Thirteen patients received [177Lu]Lu-HA-DOTATATE with a high administered peptide amount (mean 346 µg vs 178 µg standard peptide amount). Low peptide amounts were administered to fifteen patients (mean 109 µg vs 202 µg standard peptide amount). High administered peptide amount resulted in significantly lower [177Lu]Lu-HA-DOTATATE uptake in the spleen (p = 0.00012), kidney (p = 0.013) and tumor lesions (p < 0.0001) versus standard peptide amounts. For low administered peptide amount, uptake was increased in the spleen (p = 0.015), while tumor uptake was significantly reduced (p = 0.015) compared to uptake after administration of standard peptide amounts. CONCLUSIONS: These findings confirmed a peptide amount-dependent organ and tumor accumulation for [177Lu]Lu-HA-DOTATATE, with receptor saturation in spleen for high and standard peptide amounts, while tumor and kidney receptor saturation occur only with high administered peptide amounts. A high peptide amount (~ 350 µg) is not recommended for standard-dose PRRT and standard amounts (~ 200 µg) seem more suitable to achieve optimal tumor accumulation with limited organ uptake.

19.
Lancet Oncol ; 23(12): e552-e561, 2022 12.
Article in English | MEDLINE | ID: mdl-36455584

ABSTRACT

Immune checkpoint inhibitors have revolutionised cancer treatment by offering durable responses to many patients with solid and haematological cancers. The high prices and increasing use of immune checkpoint inhibitors put considerable strain on health-care budgets globally. This financial strain could jeopardise patients' access to these anti-cancer therapies. However, substantial evidence suggests that immune checkpoint inhibitors are being administered at doses that exceed the minimum dose required for maximum anti-tumour efficacy. Therefore, investigating and implementing the most cost-effective dosing strategies for immune checkpoint inhibitors are urgently necessary. This Personal View provides an overview of existing data on immune checkpoint inhibitor pharmacology and (novel) dosing strategies for anti-PD-1 therapy with nivolumab and pembrolizumab, with a special focus on cost-effectiveness and saving potential. Furthermore, specific recommendations to guide health-care professionals are provided, through the process of prescribing, rounding, preparing, and administering nivolumab and pembrolizumab in the most practical and cost-effective way possible.


Subject(s)
Hematologic Neoplasms , Nivolumab , Humans , Immune Checkpoint Inhibitors , Antibodies, Monoclonal, Humanized
20.
Theranostics ; 12(18): 7804-7820, 2022.
Article in English | MEDLINE | ID: mdl-36451855

ABSTRACT

Rationale: Physiologically based pharmacokinetic (PBPK) and population pharmacokinetic (PK) modelling approaches are widely accepted in non-radiopharmaceutical drug development and research, while there is no major role for these approaches in radiopharmaceutical development yet. In this review, a literature search was performed to specify different research purposes and questions that have previously been answered using both PBPK and population PK modelling for radiopharmaceuticals. Methods: The literature search was performed using the databases PubMed and Embase. Wide search terms included radiopharmaceutical, tracer, radioactivity, physiologically based pharmacokinetic model, PBPK, population pharmacokinetic model and nonlinear mixed-effects model. Results: Eight articles and twenty articles were included for this review based on this literature search for population PK modelling and PBPK modelling, respectively. Included population PK analyses showed to have an added value to develop predictive models for a population and to describe individual variability sources. Main purposes of PBPK models appeared related to optimizing treatment (planning), or more specifically: to find the optimal combination of peptide amount and radioactivity, to optimize treatment planning by reducing the number of measurements, to individualize treatment, to get insights in differences between pre-therapeutic and therapeutic scans or to understand inter-patient differences. Other main research subjects were regarding radiopharmaceutical comparisons, selecting ligands based on their peptide characteristics and gaining a better understanding of drug-drug interactions. Conclusions: The use of PK modelling approaches in radiopharmaceutical research remains scarce, but can be expanded to obtain a better understanding of PK and whole-body distribution of radiopharmaceuticals in general. PK modelling of radiopharmaceuticals has great potential for the nearby future and could contribute to the evolving research of radiopharmaceuticals.


Subject(s)
Drug Development , Radiopharmaceuticals , Humans , Databases, Factual
SELECTION OF CITATIONS
SEARCH DETAIL
...