Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters










Publication year range
1.
mBio ; 15(6): e0035024, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38682906

ABSTRACT

Enteric pathogens such as Salmonella enterica serovar Typhimurium experience spatial and temporal changes to the metabolic landscape throughout infection. Host reactive oxygen and nitrogen species non-enzymatically convert monosaccharides to alpha hydroxy acids, including L-tartrate. Salmonella utilizes L-tartrate early during infection to support fumarate respiration, while L-tartrate utilization ceases at later time points due to the increased availability of exogenous electron acceptors such as tetrathionate, nitrate, and oxygen. It remains unknown how Salmonella regulates its gene expression to metabolically adapt to changing nutritional environments. Here, we investigated how the transcriptional regulation for L-tartrate metabolism in Salmonella is influenced by infection-relevant cues. L-tartrate induces the transcription of ttdBAU, genes involved in L-tartrate utilization. L-tartrate metabolism is negatively regulated by two previously uncharacterized transcriptional regulators TtdV (STM3357) and TtdW (STM3358), and both TtdV and TtdW are required for the sensing of L-tartrate. The electron acceptors nitrate, tetrathionate, and oxygen repress ttdBAU transcription via the two-component system ArcAB. Furthermore, the regulation of L-tartrate metabolism is required for optimal fitness in a mouse model of Salmonella-induced colitis. TtdV, TtdW, and ArcAB allow for the integration of two cues, i.e., substrate availability and availability of exogenous electron acceptors, to control L-tartrate metabolism. Our findings provide novel insights into how Salmonella prioritizes the utilization of different electron acceptors for respiration as it experiences transitional nutrient availability throughout infection. IMPORTANCE: Bacterial pathogens must adapt their gene expression profiles to cope with diverse environments encountered during infection. This coordinated process is carried out by the integration of cues that the pathogen senses to fine-tune gene expression in a spatiotemporal manner. Many studies have elucidated the regulatory mechanisms of how Salmonella sense metabolites in the gut to activate or repress its virulence program; however, our understanding of how Salmonella coordinates its gene expression to maximize the utilization of carbon and energy sources found in transitional nutrient niches is not well understood. In this study, we discovered how Salmonella integrates two infection-relevant cues, substrate availability and exogenous electron acceptors, to control L-tartrate metabolism. From our experiments, we propose a model for how L-tartrate metabolism is regulated in response to different metabolic cues in addition to characterizing two previously unknown transcriptional regulators. This study expands our understanding of how microbes combine metabolic cues to enhance fitness during infection.


Subject(s)
Bacterial Proteins , Gene Expression Regulation, Bacterial , Salmonella typhimurium , Tartrates , Salmonella typhimurium/genetics , Salmonella typhimurium/metabolism , Mice , Animals , Tartrates/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Salmonella Infections/microbiology , Female
2.
bioRxiv ; 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38370731

ABSTRACT

Enteric pathogens such as Salmonella enterica serovar Typhimurium experience spatial and temporal changes to the metabolic landscape throughout infection. Host reactive oxygen and nitrogen species non-enzymatically convert monosaccharides to alpha hydroxy acids, including L-tartrate. Salmonella utilizes L-tartrate early during infection to support fumarate respiration, while L-tartrate utilization ceases at later time points due to the increased availability of exogenous electron acceptors such as tetrathionate, nitrate, and oxygen. It remains unknown how Salmonella regulates its gene expression to metabolically adapt to changing nutritional environments. Here, we investigated how the transcriptional regulation for L-tartrate metabolism in Salmonella is influenced by infection-relevant cues. L-tartrate induces the transcription of ttdBAU, genes involved in L-tartrate utilization. L-tartrate metabolism is negatively regulated by two previously uncharacterized transcriptional regulators TtdV (STM3357) and TtdW (STM3358), and both TtdV and TtdW are required for sensing of L-tartrate. The electron acceptors nitrate, tetrathionate, and oxygen repress ttdBAU transcription via the two-component system ArcAB. Furthermore, regulation of L-tartrate metabolism is required for optimal fitness in a mouse model of Salmonella-induced colitis. TtdV, TtdW, and ArcAB allow for the integration of two cues, substrate availability and availability of exogenous electron acceptors, to control L-tartrate metabolism. Our findings provide novel insights into how Salmonella prioritizes utilization of different electron acceptors for respiration as it experiences transitional nutrient availability throughout infection.

3.
mBio ; 15(1): e0254423, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38085029

ABSTRACT

IMPORTANCE: Bacteria can adapt flagellar motor output in response to the load that the extracellular milieu imparts on the flagellar filament to enable propulsion. Bacteria can adapt flagellar motor output in response to the load that the extracellular milieu imparts on the flagellar filament to enable propulsion through diverse environments. These changes may involve increasing power and torque in high-viscosity environments or reducing power and flagellar rotation upon contact with a surface. C. jejuni swimming velocity in low-viscosity environments is comparable to other bacterial flagellates and increases significantly as external viscosity increases. In this work, we provide evidence that the mechanics of the C. jejuni flagellar motor has evolved to naturally promote high swimming velocity in high-viscosity environments. We found that C. jejuni produces VidA and VidB as auxiliary proteins to specifically affect flagellar motor activity in low viscosity to reduce swimming velocity. Our findings provide some of the first insights into different mechanisms that exist in bacteria to alter the mechanics of a flagellar motor, depending on the viscosity of extracellular environments.


Subject(s)
Campylobacter jejuni , Campylobacter jejuni/physiology , Viscosity , Flagella/physiology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
4.
Mol Microbiol ; 116(5): 1392-1406, 2021 11.
Article in English | MEDLINE | ID: mdl-34657338

ABSTRACT

Spirochetes can be distinguished from other bacteria by their spiral-shaped morphology and subpolar periplasmic flagella. This study focused on FlhF and FlhG, which control the spatial and numerical regulation of flagella in many exoflagellated bacteria, in the spirochete Leptospira. In contrast to flhF which seems to be essential in Leptospira, we demonstrated that flhG- mutants in both the saprophyte L. biflexa and the pathogen L. interrogans were less motile than the wild-type strains in gel-like environments but not hyperflagellated as reported previously in other bacteria. Cryo-electron tomography revealed that the distance between the flagellar basal body and the tip of the cell decreased significantly in the flhG- mutant in comparison to wild-type and complemented strains. Additionally, comparative transcriptome analyses of L. biflexa flhG- and wild-type strains showed that FlhG acts as a negative regulator of transcription of some flagellar genes. We found that the L. interrogans flhG- mutant was attenuated for virulence in the hamster model. Cross-species complementation also showed that flhG is not interchangeable between species. Our results indicate that FlhF and FlhG in Leptospira contribute to governing cell motility but our data support the hypothesis that FlhF and FlhG function differently in each bacterial species, including among spirochetes.


Subject(s)
Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Flagella/genetics , Flagella/metabolism , Leptospira/genetics , Leptospira/metabolism , Monomeric GTP-Binding Proteins/genetics , Monomeric GTP-Binding Proteins/metabolism , Cryoelectron Microscopy , Gene Expression Profiling , Gene Expression Regulation, Bacterial , Genetic Complementation Test , Humans , Leptospira/cytology , Leptospirosis/microbiology , Mutation , Spirochaetales/genetics , Spirochaetales/metabolism , Virulence
5.
PLoS Pathog ; 16(7): e1008620, 2020 07.
Article in English | MEDLINE | ID: mdl-32614919

ABSTRACT

Campylobacter jejuni rotates a flagellum at each pole to swim through the viscous mucosa of its hosts' gastrointestinal tracts. Despite their importance for host colonization, however, how C. jejuni coordinates rotation of these two opposing flagella is unclear. As well as their polar placement, C. jejuni's flagella deviate from the norm of Enterobacteriaceae in other ways: their flagellar motors produce much higher torque and their flagellar filament is made of two different zones of two different flagellins. To understand how C. jejuni's opposed motors coordinate, and what contribution these factors play in C. jejuni motility, we developed strains with flagella that could be fluorescently labeled, and observed them by high-speed video microscopy. We found that C. jejuni coordinates its dual flagella by wrapping the leading filament around the cell body during swimming in high-viscosity media and that its differentiated flagellar filament and helical body have evolved to facilitate this wrapped-mode swimming.


Subject(s)
Campylobacter jejuni/physiology , Flagella/physiology , Flagellin/metabolism
6.
Proc Natl Acad Sci U S A ; 117(21): 11715-11726, 2020 05 26.
Article in English | MEDLINE | ID: mdl-32398371

ABSTRACT

Campylobacter jejuni monitors intestinal metabolites produced by the host and microbiota to initiate intestinal colonization of avian and animal hosts for commensalism and infection of humans for diarrheal disease. We previously discovered that C. jejuni has the capacity to spatially discern different intestinal regions by sensing lactate and the short-chain fatty acids acetate and butyrate and then alter transcription of colonization factors appropriately for in vivo growth. In this study, we identified the C. jejuni butyrate-modulated regulon and discovered that the BumSR two-component signal transduction system (TCS) directs a response to butyrate by identifying mutants in a genetic screen defective for butyrate-modulated transcription. The BumSR TCS, which is important for infection of humans and optimal colonization of avian hosts, senses butyrate likely by indirect means to alter transcription of genes encoding important colonization determinants. Unlike many canonical TCSs, the predicted cytoplasmic sensor kinase BumS lacked in vitro autokinase activity, which would normally lead to phosphorylation of the cognate BumR response regulator. Instead, BumS has likely evolved mutations to naturally function as a phosphatase whose activity is influenced by exogenous butyrate to control the level of endogenous phosphorylation of BumR and its ability to alter transcription of target genes. To our knowledge, the BumSR TCS is the only bacterial signal transduction system identified so far that mediates responses to the microbiota-generated intestinal metabolite butyrate, an important factor for host intestinal health and homeostasis. Our findings suggest that butyrate sensing by this system is vital for C. jejuni colonization of multiple hosts.


Subject(s)
Bacterial Proteins , Butyrates/metabolism , Campylobacter jejuni , Gene Expression Regulation, Bacterial/genetics , Phosphoric Monoester Hydrolases/metabolism , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Campylobacter Infections/microbiology , Chickens , Humans , Phosphoric Monoester Hydrolases/genetics , Signal Transduction/genetics
7.
Front Microbiol ; 11: 397, 2020.
Article in English | MEDLINE | ID: mdl-32265863

ABSTRACT

Many bacterial pathogens display glycosylated surface structures that contribute to virulence, and targeting these structures is a viable strategy for pathogen control. The foodborne pathogen Campylobacter jejuni expresses a vast diversity of flagellar glycans, and flagellar glycosylation is essential for its virulence. Little is known about why C. jejuni encodes such a diverse set of flagellar glycans, but it has been hypothesized that evolutionary pressure from bacteriophages (phages) may have contributed to this diversity. However, interactions between Campylobacter phages and host flagellar glycans have not been characterized in detail. Previously, we observed that Gp047 (now renamed FlaGrab), a conserved Campylobacter phage protein, binds to C. jejuni flagella displaying the nine-carbon monosaccharide 7-acetamidino-pseudaminic acid, and that this binding partially inhibits cell growth. However, the mechanism of this growth inhibition, as well as how C. jejuni might resist this activity, are not well-understood. Here we use RNA-Seq to show that FlaGrab exposure leads C. jejuni 11168 cells to downregulate expression of energy metabolism genes, and that FlaGrab-induced growth inhibition is dependent on motile flagella. Our results are consistent with a model whereby FlaGrab binding transmits a signal through flagella that leads to retarded cell growth. To evaluate mechanisms of FlaGrab resistance in C. jejuni, we characterized the flagellar glycans and flagellar glycosylation loci of two C. jejuni strains naturally resistant to FlaGrab binding. Our results point toward flagellar glycan diversity as the mechanism of resistance to FlaGrab. Overall, we have further characterized the interaction between this phage-encoded flagellar glycan-binding protein and C. jejuni, both in terms of mechanism of action and mechanism of resistance. Our results suggest that C. jejuni encodes as-yet unidentified mechanisms for generating flagellar glycan diversity, and point to phage proteins as exciting lenses through which to study bacterial surface glycans.

8.
mBio ; 11(2)2020 03 03.
Article in English | MEDLINE | ID: mdl-32127455

ABSTRACT

Bacterial flagella are rotating nanomachines required for motility. Flagellar gene expression and protein secretion are coordinated for efficient flagellar biogenesis. Polar flagellates, unlike peritrichous bacteria, commonly order flagellar rod and hook gene transcription as a separate step after production of the MS ring, C ring, and flagellar type III secretion system (fT3SS) core proteins that form a competent fT3SS. Conserved regulatory mechanisms in diverse polar flagellates to create this polar flagellar transcriptional program have not been thoroughly assimilated. Using in silico and genetic analyses and our previous findings in Campylobacter jejuni as a foundation, we observed a large subset of Gram-negative bacteria with the FlhF/FlhG regulatory system for polar flagellation to possess flagellum-associated two-component signal transduction systems (TCSs). We present data supporting a general theme in polar flagellates whereby MS ring, rotor, and fT3SS proteins contribute to a regulatory checkpoint during polar flagellar biogenesis. We demonstrate that Vibrio cholerae and Pseudomonas aeruginosa require the formation of this regulatory checkpoint for the TCSs to directly activate subsequent rod and hook gene transcription, which are hallmarks of the polar flagellar transcriptional program. By reprogramming transcription in V. cholerae to more closely follow the peritrichous flagellar transcriptional program, we discovered a link between the polar flagellar transcription program and the activity of FlhF/FlhG flagellar biogenesis regulators in which the transcriptional program allows polar flagellates to continue to produce flagella for motility when FlhF or FlhG activity may be altered. Our findings integrate flagellar transcriptional and biogenesis regulatory processes involved in polar flagellation in many species.IMPORTANCE Relative to peritrichous bacteria, polar flagellates possess regulatory systems that order flagellar gene transcription differently and produce flagella in specific numbers only at poles. How transcriptional and flagellar biogenesis regulatory systems are interlinked to promote the correct synthesis of polar flagella in diverse species has largely been unexplored. We found evidence for many Gram-negative polar flagellates encoding two-component signal transduction systems with activity linked to the formation of flagellar type III secretion systems to enable production of flagellar rod and hook proteins at a discrete, subsequent stage during flagellar assembly. This polar flagellar transcriptional program assists, in some manner, the FlhF/FlhG flagellar biogenesis regulatory system, which forms specific flagellation patterns in polar flagellates in maintaining flagellation and motility when activity of FlhF or FlhG might be altered. Our work provides insight into the multiple regulatory processes required for polar flagellation.


Subject(s)
Bacterial Physiological Phenomena , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Flagella/metabolism , Gene Expression Regulation, Bacterial , Signal Transduction , Computational Biology/methods , Models, Biological , Type III Secretion Systems/genetics , Type III Secretion Systems/metabolism
9.
mBio ; 11(1)2020 01 07.
Article in English | MEDLINE | ID: mdl-31911488

ABSTRACT

Bacterial flagella are reversible rotary motors that rotate external filaments for bacterial propulsion. Some flagellar motors have diversified by recruiting additional components that influence torque and rotation, but little is known about the possible diversification and evolution of core motor components. The mechanistic core of flagella is the cytoplasmic C ring, which functions as a rotor, directional switch, and assembly platform for the flagellar type III secretion system (fT3SS) ATPase. The C ring is composed of a ring of FliG proteins and a helical ring of surface presentation of antigen (SPOA) domains from the switch proteins FliM and one of two usually mutually exclusive paralogs, FliN or FliY. We investigated the composition, architecture, and function of the C ring of Campylobacter jejuni, which encodes FliG, FliM, and both FliY and FliN by a variety of interrogative approaches. We discovered a diversified C. jejuni C ring containing FliG, FliM, and both FliY, which functions as a classical FliN-like protein for flagellar assembly, and FliN, which has neofunctionalized into a structural role. Specific protein interactions drive the formation of a more complex heterooligomeric C. jejuni C-ring structure. We discovered that this complex C ring has additional cellular functions in polarly localizing FlhG for numerical regulation of flagellar biogenesis and spatial regulation of division. Furthermore, mutation of the C. jejuni C ring revealed a T3SS that was less dependent on its ATPase complex for assembly than were other systems. Our results highlight considerable evolved flagellar diversity that impacts motor output, biogenesis, and cellular processes in different species.IMPORTANCE The conserved core of bacterial flagellar motors reflects a shared evolutionary history that preserves the mechanisms essential for flagellar assembly, rotation, and directional switching. In this work, we describe an expanded and diversified set of core components in the Campylobacter jejuni flagellar C ring, the mechanistic core of the motor. Our work provides insight into how usually conserved core components may have diversified by gene duplication, enabling a division of labor of the ancestral protein between the two new proteins, acquisition of new roles in flagellar assembly and motility, and expansion of the function of the flagellum beyond motility, including spatial regulation of cell division and numerical control of flagellar biogenesis in C. jejuni Our results highlight that relatively small changes, such as gene duplications, can have substantial ramifications on the cellular roles of a molecular machine.


Subject(s)
Campylobacter jejuni/physiology , Flagella/physiology , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Biological Evolution , Campylobacter jejuni/classification , Structure-Activity Relationship , Type III Secretion Systems
10.
mBio ; 10(4)2019 08 06.
Article in English | MEDLINE | ID: mdl-31387912

ABSTRACT

The stator units of the flagellum supply power to the flagellar motor via ion transport across the cytoplasmic membrane and generate torque on the rotor for rotation. Flagellar motors across bacterial species have evolved adaptations that impact and enhance stator function to meet the demands of each species, including producing stator units using different fuel types or various stator units for different motility modalities. Campylobacter jejuni produces one of the most complex and powerful flagellar motors by positioning 17 stator units at a greater radial distance than in most other bacteria to increase power and torque for high velocity of motility. We report another evolutionary adaptation impacting flagellar stators by identifying FlgX as a chaperone for C. jejuni stator units to ensure sufficient power and torque for flagellar rotation and motility. We discovered that FlgX maintains MotA and MotB stator protein integrity likely through a direct interaction with MotA that prevents their degradation. Suppressor analysis suggested that the physiology of C. jejuni drives the requirement for FlgX to protect stator units from proteolysis by the FtsH protease complex. C. jejuni ΔflgX was strongly attenuated for colonization of the natural avian host, but colonization capacity was greatly restored by a single mutation in MotA. These findings suggest that the likely sole function of FlgX is to preserve stator unit integrity for the motility required for host interactions. Our findings demonstrate another evolved adaptation in motile bacteria to ensure the equipment of the flagellar motor with sufficient power to generate torque for motility.IMPORTANCE The bacterial flagellum is a reversible rotating motor powered by ion transport through stator units, which also exert torque on the rotor component to turn the flagellum for motility. Species-specific adaptations to flagellar motors impact stator function to meet the demands of each species to sufficiently power flagellar rotation. We identified another evolutionary adaptation by discovering that FlgX of Campylobacter jejuni preserves the integrity of stator units by functioning as a chaperone to protect stator proteins from degradation by the FtsH protease complex due to the physiology of the bacterium. FlgX is required to maintain a level of stator units sufficient to power the naturally high-torque flagellar motor of C. jejuni for motility in intestinal mucosal layers to colonize hosts. Our work continues to identify an increasing number of adaptations to flagellar motors across bacterial species that provide the mechanics necessary for producing an effective rotating nanomachine for motility.


Subject(s)
Bacterial Proteins/metabolism , Campylobacter jejuni/metabolism , Flagella/metabolism , Molecular Chaperones/metabolism , Bacterial Proteins/genetics , Campylobacter jejuni/genetics , Flagella/genetics , Molecular Chaperones/genetics , Molecular Motor Proteins/genetics , Molecular Motor Proteins/metabolism
11.
Gut ; 68(2): 289-300, 2019 02.
Article in English | MEDLINE | ID: mdl-30377189

ABSTRACT

OBJECTIVE: Campylobacter jejuni produces a genotoxin, cytolethal distending toxin (CDT), which has DNAse activity and causes DNA double-strand breaks. Although C. jejuni infection has been shown to promote intestinal inflammation, the impact of this bacterium on carcinogenesis has never been examined. DESIGN: Germ-free (GF) ApcMin/+ mice, fed with 1% dextran sulfate sodium, were used to test tumorigenesis potential of CDT-producing C. jejuni. Cells and enteroids were exposed to bacterial lysates to determine DNA damage capacity via γH2AX immunofluorescence, comet assay and cell cycle assay. To examine the interplay of CDT-producing C. jejuni, gut microbiome and host in tumorigenesis, colonic RNA-sequencing and faecal 16S rDNA sequencing were performed. Rapamycin was administrated to investigate the prevention of CDT-producing C. jejuni-induced tumorigenesis. RESULTS: GF ApcMin/+ mice colonised with human clinical isolate C. jejuni81-176 developed significantly more and larger tumours when compared with uninfected mice. C. jejuni with a mutated cdtB subunit, mutcdtB, attenuated C. jejuni-induced tumorigenesis in vivo and decreased DNA damage response in cells and enteroids. C. jejuni infection induced expression of hundreds of colonic genes, with 22 genes dependent on the presence of cdtB. The C. jejuni-infected group had a significantly different microbial gene expression profile compared with the mutcdtB group as shown by metatranscriptomic data, and different microbial communities as measured by 16S rDNA sequencing. Finally, rapamycin could diminish the tumorigenic capability of C. jejuni. CONCLUSION: Human clinical isolate C. jejuni 81-176 promotes colorectal cancer and induces changes in microbial composition and transcriptomic responses, a process dependent on CDT production.


Subject(s)
Bacterial Toxins/toxicity , Campylobacter jejuni/genetics , Campylobacter jejuni/pathogenicity , Carcinogenesis , Colorectal Neoplasms/genetics , Colorectal Neoplasms/microbiology , Animals , Campylobacter jejuni/isolation & purification , DNA Damage , DNA, Neoplasm/analysis , Feces/microbiology , Gastrointestinal Microbiome , Gene Expression , Humans , Mice , RNA, Neoplasm/analysis , Sirolimus/pharmacology , Transcriptome
12.
Microbiology (Reading) ; 164(10): 1308-1319, 2018 10.
Article in English | MEDLINE | ID: mdl-30113298

ABSTRACT

Campylobacter jejuni is an important human pathogen that causes 96 million cases of acute diarrheal disease worldwide each year. We have shown that C. jejuni CsrA is involved in the post-transcriptional regulation of more than 100 proteins, and altered expression of these proteins is presumably involved in the altered virulence-related phenotypes of a csrA mutant. Mutation of fliW results in C. jejuni cells that have greatly truncated flagella, are less motile, less able to form biofilms, and exhibit a reduced ability to colonize chicks. The loss of FliW results in the altered expression of 153 flagellar and non-flagellar proteins, the majority of which are members of the CsrA regulon. The number of proteins dysregulated in the fliW mutant was greater at mid-log phase (120 proteins) than at stationary phase (85 proteins); 52 proteins showed altered expression at both growth phases. Loss of FliW altered the growth-phase- and CsrA-mediated regulation of FlaA flagellin. FliW exerts these effects by binding to both FlaA and to CsrA, as evidenced by pull-down assays, protein-protein cross-linking, and size-exclusion chromatography. Taken together, these results show that CsrA-mediated regulation of both flagellar and non-flagellar proteins is modulated by direct binding of CsrA to the flagellar chaperone FliW. Changing FliW:CsrA stoichiometries at different growth phases allow C. jejuni to couple the expression of flagellar motility to metabolic and virulence characteristics.


Subject(s)
Campylobacter jejuni/genetics , Flagella/metabolism , Gene Expression Regulation, Bacterial , Molecular Chaperones/metabolism , Regulon/genetics , Repressor Proteins/metabolism , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biofilms/growth & development , Campylobacter jejuni/growth & development , Chickens/microbiology , Flagella/genetics , Flagellin/genetics , Flagellin/metabolism , Molecular Chaperones/genetics , Mutation , Protein Binding , Proteomics , Repressor Proteins/genetics
13.
Nat Rev Microbiol ; 16(9): 551-565, 2018 09.
Article in English | MEDLINE | ID: mdl-29892020

ABSTRACT

Campylobacter jejuni is the leading cause of bacterial diarrhoeal disease in many areas of the world. The high incidence of sporadic cases of disease in humans is largely due to its prevalence as a zoonotic agent in animals, both in agriculture and in the wild. Compared with many other enteric bacterial pathogens, C. jejuni has strict growth and nutritional requirements and lacks many virulence and colonization determinants that are typically used by bacterial pathogens to infect hosts. Instead, C. jejuni has a different collection of factors and pathways not typically associated together in enteric pathogens to establish commensalism in many animal hosts and to promote diarrhoeal disease in the human population. In this Review, we discuss the cellular architecture and structure of C. jejuni, intraspecies genotypic variation, the multiple roles of the flagellum, specific nutritional and environmental growth requirements and how these factors contribute to in vivo growth in human and avian hosts, persistent colonization and pathogenesis of diarrhoeal disease.


Subject(s)
Campylobacter jejuni/cytology , Campylobacter jejuni/physiology , Animals , Campylobacter Infections/microbiology , Campylobacter jejuni/classification , Campylobacter jejuni/growth & development , Diarrhea/microbiology , Flagella/physiology , Humans , Intestines/microbiology , Symbiosis
14.
mBio ; 8(3)2017 05 09.
Article in English | MEDLINE | ID: mdl-28487428

ABSTRACT

Campylobacter jejuni promotes commensalism in the intestinal tracts of avian hosts and diarrheal disease in humans, yet components of intestinal environments recognized as spatial cues specific for different intestinal regions by the bacterium to initiate interactions in either host are mostly unknown. By analyzing a C. jejuni acetogenesis mutant defective in converting acetyl coenzyme A (Ac-CoA) to acetate and commensal colonization of young chicks, we discovered evidence for in vivo microbiota-derived short-chain fatty acids (SCFAs) and organic acids as cues recognized by C. jejuni that modulate expression of determinants required for commensalism. We identified a set of C. jejuni genes encoding catabolic enzymes and transport systems for amino acids required for in vivo growth whose expression was modulated by SCFAs. Transcription of these genes was reduced in the acetogenesis mutant but was restored upon supplementation with physiological concentrations of the SCFAs acetate and butyrate present in the lower intestinal tracts of avian and human hosts. Conversely, the organic acid lactate, which is abundant in the upper intestinal tract where C. jejuni colonizes less efficiently, reduced expression of these genes. We propose that microbiota-generated SCFAs and lactate are cues for C. jejuni to discriminate between different intestinal regions. Spatial gradients of these metabolites likely allow C. jejuni to locate preferred niches in the lower intestinal tract and induce expression of factors required for intestinal growth and commensal colonization. Our findings provide insights into the types of cues C. jejuni monitors in the avian host for commensalism and likely in humans to promote diarrheal disease.IMPORTANCECampylobacter jejuni is a commensal of the intestinal tracts of avian species and other animals and a leading cause of diarrheal disease in humans. The types of cues sensed by C. jejuni to influence responses to promote commensalism or infection are largely lacking. By analyzing a C. jejuni acetogenesis mutant, we discovered a set of genes whose expression is modulated by lactate and short-chain fatty acids produced by the microbiota in the intestinal tract. These genes include those encoding catabolic enzymes and transport systems for amino acids that are required by C. jejuni for in vivo growth and intestinal colonization. We propose that gradients of these microbiota-generated metabolites are cues for spatial discrimination between areas of the intestines so that the bacterium can locate niches in the lower intestinal tract for optimal growth for commensalism in avian species and possibly infection of human hosts leading to diarrheal disease.


Subject(s)
Campylobacter jejuni/physiology , Fatty Acids, Volatile/metabolism , Gastrointestinal Microbiome/physiology , Symbiosis , Acetates/metabolism , Acetates/pharmacology , Acetyl Coenzyme A/metabolism , Animals , Butyrates/pharmacology , Campylobacter Infections/microbiology , Campylobacter jejuni/drug effects , Campylobacter jejuni/genetics , Campylobacter jejuni/pathogenicity , Chickens/microbiology , Fatty Acids, Volatile/biosynthesis , Fatty Acids, Volatile/genetics , Fatty Acids, Volatile/pharmacology , Gene Expression Regulation, Bacterial , Humans , Intestines/microbiology , Lactates/metabolism , Symbiosis/genetics , Virulence/genetics
15.
PLoS One ; 11(6): e0156932, 2016.
Article in English | MEDLINE | ID: mdl-27257952

ABSTRACT

Campylobacter jejuni infection is a leading bacterial cause of gastroenteritis and a common antecedent leading to Gullian-Barré syndrome. Our previous data suggested that the RNA-binding protein CsrA plays an important role in regulating several important phenotypes including motility, biofilm formation, and oxidative stress resistance. In this study, we compared the proteomes of wild type, csrA mutant, and complemented csrA mutant C. jejuni strains in an effort to elucidate the mechanisms by which CsrA affects virulence phenotypes. The putative CsrA regulon was more pronounced at stationary phase (111 regulated proteins) than at mid-log phase (25 regulated proteins). Proteins displaying altered expression in the csrA mutant included diverse metabolic functions, with roles in amino acid metabolism, TCA cycle, acetate metabolism, and various other cell processes, as well as pathogenesis-associated characteristics such as motility, chemotaxis, oxidative stress resistance, and fibronectin binding. The csrA mutant strain also showed altered autoagglutination kinetics when compared to the wild type. CsrA specifically bound the 5' end of flaA mRNA, and we demonstrated that CsrA is a growth-phase dependent repressor of FlaA expression. Finally, the csrA mutant exhibited reduced ability to colonize in a mouse model when in competition with the wild type, further underscoring the role of CsrA in C. jejuni colonization and pathogenesis.


Subject(s)
Bacterial Proteins/metabolism , Campylobacter Infections/metabolism , Campylobacter jejuni/metabolism , Campylobacter jejuni/pathogenicity , Transcription Factors/metabolism , Animals , Bacterial Proteins/genetics , Biofilms/growth & development , Campylobacter Infections/genetics , Campylobacter Infections/microbiology , Campylobacter jejuni/genetics , Electrophoretic Mobility Shift Assay , Gene Expression Regulation, Bacterial , Mice , Mice, Inbred BALB C , Mice, Mutant Strains , Regulon/genetics , Transcription Factors/genetics , Virulence/genetics , Virulence/physiology
16.
Proc Natl Acad Sci U S A ; 113(13): E1917-26, 2016 Mar 29.
Article in English | MEDLINE | ID: mdl-26976588

ABSTRACT

Although it is known that diverse bacterial flagellar motors produce different torques, the mechanism underlying torque variation is unknown. To understand this difference better, we combined genetic analyses with electron cryo-tomography subtomogram averaging to determine in situ structures of flagellar motors that produce different torques, from Campylobacter and Vibrio species. For the first time, to our knowledge, our results unambiguously locate the torque-generating stator complexes and show that diverse high-torque motors use variants of an ancestrally related family of structures to scaffold incorporation of additional stator complexes at wider radii from the axial driveshaft than in the model enteric motor. We identify the protein components of these additional scaffold structures and elucidate their sequential assembly, demonstrating that they are required for stator-complex incorporation. These proteins are widespread, suggesting that different bacteria have tailored torques to specific environments by scaffolding alternative stator placement and number. Our results quantitatively account for different motor torques, complete the assignment of the locations of the major flagellar components, and provide crucial constraints for understanding mechanisms of torque generation and the evolution of multiprotein complexes.


Subject(s)
Bacterial Proteins/chemistry , Flagella/chemistry , Molecular Motor Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Campylobacter jejuni/chemistry , Campylobacter jejuni/cytology , Campylobacter jejuni/genetics , Electron Microscope Tomography/methods , Molecular Motor Proteins/metabolism , Multiprotein Complexes/chemistry , Multiprotein Complexes/metabolism , Protein Conformation , Salmonella/chemistry , Salmonella/cytology , Torque , Vibrio/chemistry , Vibrio/cytology
17.
Mol Microbiol ; 99(2): 291-306, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26411371

ABSTRACT

Flagellation in polar flagellates is one of the rare biosynthetic processes known to be numerically regulated in bacteria. Polar flagellates must spatially and numerically regulate flagellar biogenesis to create flagellation patterns for each species that are ideal for motility. FlhG ATPases numerically regulate polar flagellar biogenesis, yet FlhG orthologs are diverse in motif composition. We discovered that Campylobacter jejuni FlhG is at the center of a multipartite mechanism that likely influences a flagellar biosynthetic step to control flagellar number for amphitrichous flagellation, rather than suppressing activators of flagellar gene transcription as in Vibrio and Pseudomonas species. Unlike other FlhG orthologs, the FlhG ATPase domain was not required to regulate flagellar number in C. jejuni. Instead, two regions of C. jejuni FlhG that are absent or significantly altered in FlhG orthologs are involved in numerical regulation of flagellar biogenesis. Additionally, we found that C. jejuni FlhG influences FlhF GTPase activity, which may mechanistically contribute to flagellar number regulation. Our work suggests that FlhG ATPases divergently evolved in each polarly flagellated species to employ different intrinsic domains and extrinsic effectors to ultimately mediate a common output - precise numerical control of polar flagellar biogenesis required to create species-specific flagellation patterns optimal for motility.


Subject(s)
Bacterial Proteins/metabolism , Campylobacter jejuni/genetics , Flagella/metabolism , Gene Expression Regulation, Bacterial , Monomeric GTP-Binding Proteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Campylobacter jejuni/enzymology , Campylobacter jejuni/metabolism , Flagella/chemistry , Flagella/genetics , Monomeric GTP-Binding Proteins/chemistry , Monomeric GTP-Binding Proteins/genetics , Protein Structure, Tertiary
18.
J Bacteriol ; 197(9): 1592-605, 2015 May.
Article in English | MEDLINE | ID: mdl-25691530

ABSTRACT

UNLABELLED: Campylobacter jejuni is a leading cause of bacterial diarrheal disease and a frequent commensal of the intestinal tract in poultry and other animals. For optimal growth and colonization of hosts, C. jejuni employs two-component regulatory systems (TCSs) to monitor environmental conditions and promote proper expression of specific genes. We analyzed the potential of C. jejuni Cjj81176_1484 (Cjj1484) and Cjj81176_1483 (Cjj1483) to encode proteins of a cognate TCS that influences expression of genes possibly important for C. jejuni growth and colonization. Transcriptome analysis revealed that the regulons of the Cjj81176_1484 (Cjj1484) histidine kinase and the Cjj81176_1483 (Cjj1483) response regulator contain many common genes, suggesting that these proteins likely form a cognate TCS. We found that this TCS generally functions to repress expression of specific proteins with roles in metabolism, iron/heme acquisition, and respiration. Furthermore, the TCS repressed expression of Cjj81176_0438 and Cjj81176_0439, which had previously been found to encode a gluconate dehydrogenase complex required for commensal colonization of the chick intestinal tract. However, the TCS and other specific genes whose expression is repressed by the TCS were not required for colonization of chicks. We observed that the Cjj1483 response regulator binds target promoters in both unphosphorylated and phosphorylated forms and influences expression of some specific genes independently of the Cjj1484 histidine kinase. This work further expands the signaling mechanisms of C. jejuni and provides additional insights regarding the complex and multifactorial regulation of many genes involved in basic metabolism, respiration, and nutrient acquisition that the bacterium requires for optimal growth in different environments. IMPORTANCE: Bacterial two-component regulatory systems (TCSs) link environmental cues to expression of specific genes that enable optimal bacterial growth or colonization of hosts. We found that the Campylobacter jejuni Cjj1484 histidine kinase and Cjj1483 response regulator function as a cognate TCS to largely repress expression of target genes encoding a gluconate dehydrogenase complex required for commensal colonization of the chick intestinal tract, as well as other genes encoding proteins for heme or iron acquisition, metabolism, and respiration. We also discovered different modes by which Cjj1483 may mediate repression with and without Cjj1484. This work provides insight into the signal transduction mechanisms of a leading cause of bacterial diarrheal disease and emphasizes the multifactorial and complex regulation of specific biological processes in C. jejuni.


Subject(s)
Campylobacter jejuni/enzymology , Campylobacter jejuni/growth & development , Gene Expression Regulation, Bacterial , Protein Kinases/metabolism , Regulon , Transcription Factors/metabolism , Gene Expression Profiling , Histidine Kinase , Signal Transduction
19.
Mol Microbiol ; 93(5): 957-74, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25041103

ABSTRACT

The Campylobacter jejuni flagellum exports both proteins that form the flagellar organelle for swimming motility and colonization and virulence factors that promote commensal colonization of the avian intestinal tract or invasion of human intestinal cells respectively. We explored how the C. jejuni flagellum is a versatile secretory organelle by examining molecular determinants that allow colonization and virulence factors to exploit the flagellum for their own secretion. Flagellar biogenesis was observed to exert temporal control of secretion of these proteins, indicating that a bolus of secretion of colonization and virulence factors occurs during hook biogenesis with filament polymerization itself reducing secretion of these factors. Furthermore, we found that intramolecular and intermolecular requirements for flagellar-dependent secretion of these proteins were most reminiscent to those for flagellin secretion. Importantly, we discovered that secretion of one colonization and virulence factor, CiaI, was not required for invasion of human colonic cells, which counters previous hypotheses for how this protein functions during invasion. Instead, secretion of CiaI was essential for C. jejuni to facilitate commensal colonization of the natural avian host. Our work provides insight into the versatility of the bacterial flagellum as a secretory machine that can export proteins promoting diverse biological processes.


Subject(s)
Bacterial Proteins/metabolism , Campylobacter Infections/microbiology , Campylobacter jejuni/pathogenicity , Flagella/metabolism , Animals , Bacterial Proteins/genetics , Bacterial Secretion Systems , Campylobacter jejuni/genetics , Campylobacter jejuni/growth & development , Campylobacter jejuni/metabolism , Chick Embryo , Flagella/genetics , Humans , Virulence
20.
Environ Microbiol ; 16(4): 1105-21, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24245612

ABSTRACT

Microaerophilic bacteria are adapted to low oxygen environments, but the mechanisms by which their growth in air is inhibited are not well understood. The citric acid cycle in the microaerophilic pathogen Campylobacter jejuni is potentially vulnerable, as it employs pyruvate and 2-oxoglutarate:acceptor oxidoreductases (Por and Oor), which contain labile (4Fe-4S) centres. Here, we show that both enzymes are rapidly inactivated after exposure of cells to a fully aerobic environment. We investigated the mechanisms that might protect enzyme activity and identify a role for the hemerythrin HerA (Cj0241). A herA mutant exhibits an aerobic growth defect and reduced Por and Oor activities after exposure to 21% (v/v) oxygen. Slow anaerobic recovery of these activities after oxygen damage was observed, but at similar rates in both wild-type and herA strains, suggesting the role of HerA is to prevent Fe-S cluster damage, rather than promote repair. Another hemerythrin (HerB; Cj1224) also plays a protective role. Purified HerA and HerB exhibited optical absorption, ligand binding and resonance Raman spectra typical of µ-oxo-bridged di-iron containing hemerythrins. We conclude that oxygen lability and poor repair of Por and Oor are major contributors to microaerophily in C. jejuni; hemerythrins help prevent enzyme damage microaerobically or during oxygen transients.


Subject(s)
Bacterial Proteins/metabolism , Campylobacter jejuni/metabolism , Hemerythrin/metabolism , Iron-Sulfur Proteins/metabolism , Oxidative Stress
SELECTION OF CITATIONS
SEARCH DETAIL
...