Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 11(8): e0158542, 2016.
Article in English | MEDLINE | ID: mdl-27487019

ABSTRACT

Tegus of the genera Tupinambis and Salvator are the largest Neotropical lizards and the most exploited clade of Neotropical reptiles. For three decades more than 34 million tegu skins were in trade, about 1.02 million per year. The genus Tupinambis is distributed in South America east of the Andes, and currently contains four recognized species, three of which are found only in Brazil. However, the type species of the genus, T. teguixin, is known from Bolivia, Brazil, Colombia, Ecuador, French Guyana, Guyana, Peru, Suriname, Trinidad and Tobago, and Venezuela (including the Isla de Margarita). Here we present molecular and morphological evidence that this species is genetically divergent across its range and identify four distinct clades some of which are sympatric. The occurrence of cryptic sympatric species undoubtedly exacerbated the nomenclatural problems of the past. We discuss the species supported by molecular and morphological evidence and increase the number of species in the genus Tupinambis to seven. The four members of the T. teguixin group continue to be confused with Salvator merianae, despite having a distinctly different morphology and reproductive mode. All members of the genus Tupinambis are CITES Appendix II. Yet, they continue to be heavily exploited, under studied, and confused in the minds of the public, conservationists, and scientists.


Subject(s)
DNA/genetics , Lizards/anatomy & histology , Lizards/classification , Animals , Evolution, Molecular , Genetic Speciation , Lizards/genetics , Phylogeny , South America , Sympatry
2.
Mol Phylogenet Evol ; 103: 75-84, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27395779

ABSTRACT

A well-known issue in phylogenetics is discordance among gene trees, species trees, morphology, and other data types. Gene-tree discordance is often caused by incomplete lineage sorting, lateral gene transfer, and gene duplication. Multispecies-coalescent methods can account for incomplete lineage sorting and are believed by many to be more accurate than concatenation. However, simulation studies and empirical data have demonstrated that concatenation and species tree methods often recover similar topologies. We use three popular methods of phylogenetic reconstruction (one concatenation, two species tree) to evaluate relationships within Teiidae. These lizards are distributed across the United States to Argentina and the West Indies, and their classification has been controversial due to incomplete sampling and the discordance among various character types (chromosomes, DNA, musculature, osteology, etc.) used to reconstruct phylogenetic relationships. Recent morphological and molecular analyses of the group resurrected three genera and created five new genera to resolve non-monophyly in three historically ill-defined genera: Ameiva, Cnemidophorus, and Tupinambis. Here, we assess the phylogenetic relationships of the Teiidae using "next-generation" anchored-phylogenomics sequencing. Our final alignment includes 316 loci (488,656bp DNA) for 244 individuals (56 species of teiids, representing all currently recognized genera) and all three methods (ExaML, MP-EST, and ASTRAL-II) recovered essentially identical topologies. Our results are basically in agreement with recent results from morphology and smaller molecular datasets, showing support for monophyly of the eight new genera. Interestingly, even with hundreds of loci, the relationships among some genera in Tupinambinae remain ambiguous (i.e. low nodal support for the position of Salvator and Dracaena).


Subject(s)
Lizards/classification , Animals , Chromosomes/genetics , Expressed Sequence Tags , Genetic Loci , Lizards/anatomy & histology , Lizards/genetics , Phylogeny
3.
Mol Phylogenet Evol ; 81: 221-31, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25193610

ABSTRACT

Next-generation genomic sequencing promises to quickly and cheaply resolve remaining contentious nodes in the Tree of Life, and facilitates species-tree estimation while taking into account stochastic genealogical discordance among loci. Recent methods for estimating species trees bypass full likelihood-based estimates of the multi-species coalescent, and approximate the true species-tree using simpler summary metrics. These methods converge on the true species-tree with sufficient genomic sampling, even in the anomaly zone. However, no studies have yet evaluated their efficacy on a large-scale phylogenomic dataset, and compared them to previous concatenation strategies. Here, we generate such a dataset for Caenophidian snakes, a group with >2500 species that contains several rapid radiations that were poorly resolved with fewer loci. We generate sequence data for 333 single-copy nuclear loci with ∼100% coverage (∼0% missing data) for 31 major lineages. We estimate phylogenies using neighbor joining, maximum parsimony, maximum likelihood, and three summary species-tree approaches (NJst, STAR, and MP-EST). All methods yield similar resolution and support for most nodes. However, not all methods support monophyly of Caenophidia, with Acrochordidae placed as the sister taxon to Pythonidae in some analyses. Thus, phylogenomic species-tree estimation may occasionally disagree with well-supported relationships from concatenated analyses of small numbers of nuclear or mitochondrial genes, a consideration for future studies. In contrast for at least two diverse, rapid radiations (Lamprophiidae and Colubridae), phylogenomic data and species-tree inference do little to improve resolution and support. Thus, certain nodes may lack strong signal, and larger datasets and more sophisticated analyses may still fail to resolve them.


Subject(s)
Biological Evolution , Phylogeny , Snakes/classification , Animals , Genomics , Likelihood Functions , Models, Genetic , Sequence Analysis, DNA , Snakes/genetics
4.
Mol Ecol ; 22(4): 1134-57, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23286376

ABSTRACT

Evidence from numerous Pan-African savannah mammals indicates that open-habitat refugia existed in Africa during the Pleistocene, isolated by expanding tropical forests during warm and humid interglacial periods. However, comparative data from other taxonomic groups are currently lacking. We present a phylogeographic investigation of the African puff adder (Bitis arietans), a snake that occurs in open-habitat formations throughout sub-Saharan Africa. Multiple parapatric mitochondrial clades occur across the current distribution of B. arietans, including a widespread southern African clade that is subdivided into four separate clades. We investigated the historical processes responsible for generating these phylogeographic patterns in southern Africa using species distribution modelling and genetic approaches. Our results show that interior regions of South Africa became largely inhospitable for B. arietans during glacial maxima, whereas coastal and more northerly areas remained habitable. This corresponds well with the locations of refugia inferred from mitochondrial data using a continuous phylogeographic diffusion model. Analysis of data from five anonymous nuclear loci revealed broadly similar patterns to mtDNA. Secondary admixture was detected between previously isolated refugial populations. In some cases, this is limited to individuals occurring near mitochondrial clade contact zones, but in other cases, more extensive admixture is evident. Overall, our study reveals a complex history of refugial isolation and secondary expansion for puff adders and a mosaic of isolated refugia in southern Africa. We also identify key differences between the processes that drove isolation in B. arietans and those hypothesized for sympatric savannah mammals.


Subject(s)
Biological Evolution , Phylogeny , Viperidae/genetics , Africa, Southern , Animals , Bayes Theorem , Cell Nucleus/genetics , Climate Change , DNA, Mitochondrial/genetics , Genetics, Population , Models, Genetic , Phylogeography , Sequence Analysis, DNA
5.
Mol Phylogenet Evol ; 66(3): 969-78, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23261713

ABSTRACT

Snake diversity in the island of Sri Lanka is extremely high, hosting at least 89 inland (i.e., non-marine) snake species, of which at least 49 are endemic. This includes the endemic genera Aspidura, Balanophis, Cercaspis, Haplocercus, and Pseudotyphlops, which are of uncertain phylogenetic affinity. We present phylogenetic evidence from nuclear and mitochondrial loci showing the relationships of 40 snake species from Sri Lanka (22 endemics) to the remaining global snake fauna. To determine the phylogenetic placement of these species, we create a molecular dataset containing 10 genes for all global snake genera, while also sampling all available species for genera with endemic species occurring in Sri Lanka. Our sampling comprises five mitochondrial genes (12S, 16S, cyt-b, ND2, and ND4) and five nuclear genes (BDNF, c-mos, NT3 RAG-1, and RAG-2), for a total of up to 9582bp per taxon. We find that the five endemic genera represent portions of four independent colonizations of Sri Lanka, with Cercaspis nested within Colubrinae, Balanophis in Natricinae, Pseudotyphlops in Uropeltidae, and that Aspidura+Haplocercus represents a distinct, ancient lineage within Natricinae. We synonymize two endemic genera that render other genera paraphyletic (Haplocercus with Aspidura, and Cercaspis with Lycodon), and discover that further endemic radiations may be present on the island, including a new taxon from the blindsnake family Typhlopidae, suggesting a large endemic radiation. Despite its small size relative to other islands such as New Guinea, Borneo, and Madagascar, Sri Lanka has one of the most phylogenetically diverse island snake faunas in the world, and more research is needed to characterize the island's biodiversity, with numerous undescribed species in multiple lineages.


Subject(s)
Animal Distribution , Biodiversity , Phylogeny , Snakes/classification , Snakes/genetics , Animals , Base Sequence , DNA, Mitochondrial/genetics , Likelihood Functions , Models, Genetic , Molecular Sequence Data , Sequence Analysis, DNA , Sri Lanka
SELECTION OF CITATIONS
SEARCH DETAIL
...