Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Transfusion ; 55(6 Pt 2): 1451-6, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25523184

ABSTRACT

BACKGROUND: Until recently, SARAH (SARA) was a low-frequency antigen within the 700 series (700.052). SARA was discovered in Australia and subsequently described in Canada where anti-SARA was implicated in severe hemolytic disease of the fetus and newborn (HDFN). This study investigated whether SARA could be recategorized into an existing, or novel, blood group system. STUDY DESIGN AND METHODS: Serologically typed Australian SARA family members (n = 9) were exome sequenced followed by bioinformatics analysis. Sanger sequencing of Exon 3 of GYPA of Australian (n = 9) and Canadian (n = 9) family members was then performed, as were peptide inhibition studies. RESULTS: Exome sequencing identified 499,329 single-nucleotide variants (SNVs) within the nine individuals. Filtering excluded SNVs with an NCBI dbSNP ID (n = 482,177) and non-protein coding SNVs (n = 14,008); for the remaining 3144 SNVs, only one, c.240G>T of GYPA encoding p.Arg80Ser, was present in all six SARA-positive individuals. Sanger sequencing confirmed the presence of c.240G>T in the Australian SARA-positive individuals and demonstrated the same genetic basis in the Canadian SARA family. For a peptide representing the SARA sequence, inhibition of anti-SARA against SARA-positive cells was 84.6% at a concentration of 1.0 mg/mL. CONCLUSION: We provide evidence that the SARA antigen is encoded by a SNV on GYPA and SARA has been reassigned to the MNS blood group system, now MNS47. This discovery provides a basis for application of genetic approaches in SARA typing when clinically indicated, for example, in HDFN.


Subject(s)
Genetic Variation , Isoantigens/genetics , MNSs Blood-Group System/genetics , Australia , Canada , Erythroblastosis, Fetal/genetics , Family , Female , Gene Frequency , Humans , Infant, Newborn , Male , Pedigree , Polymorphism, Single Nucleotide , Pregnancy , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL