Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
IEEE/ACM Trans Comput Biol Bioinform ; 17(6): 1895-1906, 2020.
Article in English | MEDLINE | ID: mdl-30869629

ABSTRACT

We present an analysis of the problem of identifying biological context and associating it with biochemical events described in biomedical texts. This constitutes a non-trivial, inter-sentential relation extraction task. We focus on biological context as descriptions of the species, tissue type, and cell type that are associated with biochemical events. We present a new corpus of open access biomedical texts that have been annotated by biology subject matter experts to highlight context-event relations. Using this corpus, we evaluate several classifiers for context-event association along with a detailed analysis of the impact of a variety of linguistic features on classifier performance. We find that gradient tree boosting performs by far the best, achieving an F1 of 0.865 in a cross-validation study.


Subject(s)
Computational Biology/methods , Data Mining/methods , Natural Language Processing , Animals , Biomedical Research , Databases, Factual , Humans , Mice
2.
New Phytol ; 215(4): 1451-1461, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28737219

ABSTRACT

A long-standing ambition in ecosystem science has been to understand the relationship between ecosystem community composition, structure and function. Differential water use and hydraulic redistribution have been proposed as one mechanism that might allow for the coexistence of overstory woody plants and understory grasses. Here, we investigated how patterns of hydraulic redistribution influence overstory and understory ecophysiological function and how patterns vary across timescales of an individual precipitation event to an entire growing season. To this end, we linked measures of sap flux within lateral and tap roots, leaf-level photosynthesis, ecosystem-level carbon exchange and soil carbon dioxide efflux with local meteorology data. The hydraulic redistribution regime was characterized predominantly by hydraulic descent relative to hydraulic lift. We found only a competitive interaction between the overstory and understory, regardless of temporal time scale. Overstory trees used nearly all water lifted by the taproot to meet their own transpirational needs. Our work suggests that alleviating water stress is not the reason we find grasses growing in the understory of woody plants; rather, other stresses, such as excessive light and temperature, are being ameliorated. As such, both the two-layer model and stress gradient hypothesis need to be refined to account for this coexistence in drylands.


Subject(s)
Desert Climate , Grassland , Trees/physiology , Water , Carbon Dioxide/metabolism , Photosynthesis , Plant Leaves/physiology , Soil/chemistry , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...