Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Spectrosc ; 70(8): 1375-83, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27329834

ABSTRACT

This manuscript describes a simple process for fabricating gold-based, multi-layered, surface-enhanced Raman scattering (SERS) substrates that can be applied to a variety of different nanostructures, while still providing multi-layer enhancement factors comparable to those previously achieved only with optimized silver/silver oxide/silver substrates. In particular, gold multi-layered substrates generated by atomic layer deposition (ALD) have been fabricated and characterized in terms of their optimal performance, revealing multi-layer enhancements of 2.3-fold per spacer layer applied. These substrates were fabricated using TiO2 as the dielectric spacer material between adjacent gold layers, with ALD providing a conformal thin film with high surface coverage and low thickness. By varying the spacer layer thicknesses from sub-monolayer (non-contiguous) films through multiple TiO2 layer thick films, the non-monotonic spacer layer thickness response has been elucidated, revealing the importance of thin, contiguous dielectric spacer layers for optimal enhancement. Furthermore, the extended shelf life of these gold multi-layered substrates was characterized, demonstrating usable lifetimes (i.e. following storage in ambient conditions) of greater than five months, with the further potential for simple limited electrochemical regeneration even after this time.

2.
ACS Appl Mater Interfaces ; 8(3): 1667-75, 2016 Jan 27.
Article in English | MEDLINE | ID: mdl-26741279

ABSTRACT

In this work, we studied the evolution and transport of the native oxides during the atomic layer deposition (ALD) of TiO2 on GaAs(100) from tetrakis dimethyl amino titanium and H2O. Arsenic oxide transport through the TiO2 film and removal during the ALD process was investigated using transmission Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). Experiments were designed to decouple these processes by utilizing their temperature dependence. A 4 nm TiO2 layer was initially deposited on a native oxide surface at 100 °C. Ex situ XPS confirmed that this step disturbed the interface minimally. An additional 3 nm TiO2 film was subsequently deposited at 150 to 250 °C with and without an intermediate thermal treatment step at 250 °C. Arsenic and gallium oxide removal was confirmed during this second deposition, leading to the inevitable conclusion that these oxides traversed at least 4 nm of film so as to react with the precursor and its surface reaction/decomposition byproducts. XPS measurements confirmed the relocation of both arsenic and gallium oxides from the interface to the bulk of the TiO2 film under normal processing conditions. These results explain the continuous native oxide removal observed for alkyl-amine precursor-based ALD processes on III-V surfaces and provide further insight into the mechanisms of film growth.

SELECTION OF CITATIONS
SEARCH DETAIL
...