Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Cancers (Basel) ; 14(19)2022 Oct 05.
Article in English | MEDLINE | ID: mdl-36230784

ABSTRACT

Auranofin (Ridaura®, AUF) is a gold complex originally approved as an antirheumatic agent that has emerged as a potential candidate for multiple repurposed therapies. The best-studied anticancer mechanism of AUF is the inhibition of thioredoxin reductase (TrxR). However, a number of reports indicate a more complex and multifaceted mode of action for AUF that could be cancer cell type- and dose-dependent. In this study, we observed that AUF displayed variable cytotoxicity in five triple-negative breast cancer cell lines. Using representative MDA-MB-231 cells treated with moderate and cytotoxic doses of AUF, we evidenced that an AUF-mediated TrxR inhibition alone may not be sufficient to induce cell death. Cytotoxic doses of AUF elicited rapid and drastic intracellular oxidative stress affecting the mitochondria, cytoplasm and nucleus. A "redoxome" proteomics investigation revealed that a short treatment with a cytotoxic dose AUF altered the redox state of a number of cysteines-containing proteins, pointing out that the cell proliferation/cell division/cell cycle and cell-cell adhesion/cytoskeleton structure were the mostly affected pathways. Experimentally, AUF treatment triggered a dose-dependent S-phase arrest and a rapid disintegration of the actin cytoskeleton structure. Our study shows a new spectrum of AUF-induced early effects and should provide novel insights into the complex redox-based mechanisms of this promising anticancer molecule.

2.
Genome Res ; 2022 Jul 20.
Article in English | MEDLINE | ID: mdl-35858751

ABSTRACT

Intronic polyadenylation (IPA) isoforms, which contain alternative last exons, are widely regulated in various biological processes and by many factors. However, little is known about their cytoplasmic regulation and translational status. In this study, we provide the first evidence that the genome-wide patterns of IPA isoform regulation during a biological process can be very distinct between the transcriptome and translatome, and between the nucleus and cytosol. Indeed, by 3'-seq analyses on breast cancer cells, we show that the genotoxic anticancer drug, doxorubicin, preferentially down-regulates the IPA to the last-exon (IPA:LE) isoform ratio in whole cells (as previously reported) but preferentially up-regulates it in polysomes. We further show that in nuclei, doxorubicin almost exclusively down-regulates the IPA:LE ratio, whereas in the cytosol, it preferentially up-regulates the isoform ratio, as in polysomes. Then, focusing on IPA isoforms that are up-regulated by doxorubicin in the cytosol and highly translated (up-regulated and/or abundant in polysomes), we identify several IPA isoforms that promote cell survival to doxorubicin. Mechanistically, by using an original approach of condition- and compartment-specific CLIP-seq (CCS-iCLIP) to analyze ELAVL1-RNA interactions in the nucleus and cytosol in the presence and absence of doxorubicin, as well as 3'-seq analyses upon ELAVL1 depletion, we show that the RNA-binding protein ELAVL1 mediates both nuclear down-regulation and cytosolic up-regulation of the IPA:LE isoform ratio in distinct sets of genes in response to doxorubicin. Altogether, these findings reveal differential regulation of the IPA:LE isoform ratio across subcellular compartments during drug response and its coordination by an RNA-binding protein.

3.
Int J Mol Sci ; 20(16)2019 Aug 09.
Article in English | MEDLINE | ID: mdl-31405050

ABSTRACT

Compelling evidence supports a tight link between oxidative stress and protein aggregation processes, which are noticeably involved in the development of proteinopathies, such as Alzheimer's disease, Parkinson's disease, and prion disease. The literature is tremendously rich in studies that establish a functional link between both processes, revealing that oxidative stress can be either causative, or consecutive, to protein aggregation. Because oxidative stress monitoring is highly challenging and may often lead to artefactual results, cutting-edge technical tools have been developed recently in the redox field, improving the ability to measure oxidative perturbations in biological systems. This review aims at providing an update of the previously known functional links between oxidative stress and protein aggregation, thereby revisiting the long-established relationship between both processes.


Subject(s)
Oxidative Stress , Protein Aggregation, Pathological/metabolism , Proteins/metabolism , Alzheimer Disease/metabolism , Animals , Humans , Parkinson Disease/metabolism , Prion Diseases/metabolism , Protein Aggregates
4.
Redox Biol ; 26: 101290, 2019 09.
Article in English | MEDLINE | ID: mdl-31412312

ABSTRACT

Vitamin C (VitC) possesses pro-oxidant properties at high pharmacologic concentrations which favor repurposing VitC as an anti-cancer therapeutic agent. However, redox-based anticancer properties of VitC are yet partially understood. We examined the difference between the reduced and oxidized forms of VitC, ascorbic acid (AA) and dehydroascorbic acid (DHA), in terms of cytotoxicity and redox mechanisms toward breast cancer cells. Our data showed that AA displayed higher cytotoxicity towards triple-negative breast cancer (TNBC) cell lines in vitro than DHA. AA exhibited a similar cytotoxicity on non-TNBC cells, while only a minor detrimental effect on noncancerous cells. Using MDA-MB-231, a representative TNBC cell line, we observed that AA- and DHA-induced cytotoxicity were linked to cellular redox-state alterations. Hydrogen peroxide (H2O2) accumulation in the extracellular medium and in different intracellular compartments, and to a lesser degree, intracellular glutathione oxidation, played a key role in AA-induced cytotoxicity. In contrast, DHA affected glutathione oxidation and had less cytotoxicity. A "redoxome" approach revealed that AA treatment altered the redox state of key antioxidants and a number of cysteine-containing proteins including many nucleic acid binding proteins and proteins involved in RNA and DNA metabolisms and in energetic processes. We showed that cell cycle arrest and translation inhibition were associated with AA-induced cytotoxicity. Finally, bioinformatics analysis and biological experiments identified that peroxiredoxin 1 (PRDX1) expression levels correlated with AA differential cytotoxicity in breast cancer cells, suggesting a potential predictive value of PRDX1. This study provides insight into the redox-based mechanisms of VitC anticancer activity, indicating that pharmacologic doses of VitC and VitC-based rational drug combinations could be novel therapeutic opportunities for triple-negative breast cancer.


Subject(s)
Antioxidants/pharmacology , Ascorbic Acid/pharmacology , Cell Cycle Checkpoints/drug effects , Cysteine , Oxidation-Reduction/drug effects , Protein Biosynthesis/drug effects , Antioxidants/chemistry , Cell Cycle Checkpoints/genetics , Cell Line , Computational Biology/methods , Cysteine/chemistry , Endothelial Cells/metabolism , Glutathione/metabolism , Humans , Hydrogen Peroxide/metabolism , Oxidative Stress/drug effects , Peroxiredoxins , Reactive Oxygen Species/metabolism
5.
J Natl Cancer Inst ; 111(6): 597-608, 2019 Jun 01.
Article in English | MEDLINE | ID: mdl-30779852

ABSTRACT

BACKGROUND: Cancer cells from different origins exhibit various basal redox statuses and thus respond differently to intrinsic or extrinsic oxidative stress. These intricate characteristics condition the success of redox-based anticancer therapies that capitalize on the ability of reactive oxygen species to achieve selective and efficient cancer cell killing. METHODS: Redox biology methods, stable isotope labeling by amino acids in cell culture (SILAC)-based proteomics, and bioinformatics pattern comparisons were used to decipher the underlying mechanisms for differential response of lung and breast cancer cell models to redox-modulating molecule auranofin (AUF) and to combinations of AUF and vitamin C (VC). The in vivo effect of AUF, VC, and two AUF/VC combinations on mice bearing MDA-MB-231 xenografts (n = 5 mice per group) was also evaluated. All statistical tests were two-sided. RESULTS: AUF targeted simultaneously the thioredoxin and glutathione antioxidant systems. AUF/VC combinations exerted a synergistic and hydrogen peroxide (H2O2)-mediated cytotoxicity toward MDA-MB-231 cells and other breast cancer cell lines. The anticancer potential of AUF/VC combinations was validated in vivo on MDA-MB-231 xenografts in mice without notable side effects. On day 14 of treatments, mean (SD) tumor volumes for the vehicle-treated control group and the two AUF/VC combination-treated groups (A/V1 and A/V2) were 197.67 (24.28) mm3, 15.66 (10.90) mm3, and 10.23 (7.30)mm3, respectively; adjusted P values of the differences between mean tumor volumes of vehicle vs A/V1 groups and vehicle vs A/V2 groups were both less than .001. SILAC proteomics, bioinformatics analysis, and functional experiments linked prostaglandin reductase 1 (PTGR1) expression levels with breast cancer cell sensitivity to AUF/VC combinations. CONCLUSION: The combination of AUF and VC, two commonly available drugs, could be efficient against triple-negative breast cancer and potentially other cancers with similar redox properties and PTGR1 expression levels. The redox-based anticancer activity of this combination and the discriminatory potential of PTGR1 expression are worth further assessment in preclinical and clinical studies.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Triple Negative Breast Neoplasms/drug therapy , A549 Cells , Animals , Ascorbic Acid/administration & dosage , Auranofin/administration & dosage , Cell Line, Tumor , Female , Glutathione/metabolism , Human Umbilical Vein Endothelial Cells , Humans , Mice , Oxidative Stress/drug effects , Proteome/metabolism , Random Allocation , Triple Negative Breast Neoplasms/metabolism , Xenograft Model Antitumor Assays
6.
J Natl Cancer Inst ; 2018 Nov 20.
Article in English | MEDLINE | ID: mdl-30462268

ABSTRACT

BACKGROUND: Cancer cells from different origins exhibit various basal redox statuses and thus respond differently to intrinsic or extrinsic oxidative stress. These intricate characteristics condition the success of redox-based anticancer therapies that capitalize on the ability of reactive oxygen species to achieve selective and efficient cancer cell killing. METHODS: Redox biology methods, stable isotope labeling by amino acids in cell culture (SILAC)-based proteomics, and bioinformatics pattern comparisons were used to decipher the underlying mechanisms for differential response of lung and breast cancer cell models to redox-modulating molecule auranofin (AUF) and to combinations of AUF and vitamin C (VC). The in vivo effect of AUF, VC, and two AUF/VC combinations on mice bearing MDA-MB-231 xenografts (n = 5 mice per group) was also evaluated. All statistical tests were two-sided. RESULTS: AUF targeted simultaneously the thioredoxin and glutathione antioxidant systems. AUF/VC combinations exerted a synergistic and hydrogen peroxide (H2O2)-mediated cytotoxicity toward MDA-MB-231 cells and other breast cancer cell lines. The anticancer potential of AUF/VC combinations was validated in vivo on MDA-MB-231 xenografts in mice without notable side effects. On day 14 of treatments, mean (SD) tumor volumes for the vehicle-treated control group and the two AUF/VC combination-treated groups (A/V1 and A/V2) were 197.67 (24.28) mm3, 15.66 (10.90) mm3, and 10.23 (7.30)mm3, respectively; adjusted P values of the differences between mean tumor volumes of vehicle vs A/V1 groups and vehicle vs A/V2 groups were both less than .001. SILAC proteomics, bioinformatics analysis, and functional experiments linked prostaglandin reductase 1 (PTGR1) expression levels with breast cancer cell sensitivity to AUF/VC combinations. CONCLUSION: The combination of AUF and VC, two commonly available drugs, could be efficient against triple-negative breast cancer and potentially other cancers with similar redox properties and PTGR1 expression levels. The redox-based anticancer activity of this combination and the discriminatory potential of PTGR1 expression are worth further assessment in preclinical and clinical studies.

7.
PLoS One ; 10(6): e0129222, 2015.
Article in English | MEDLINE | ID: mdl-26053431

ABSTRACT

Human acute promyelocytic leukemia (APL) is characterized by a specific balanced translocation t(15;17)(q22;q21) involving the PML and RARA genes. In both de novo and therapy-related APL, the most frequent PML breakpoints are located within intron 6, and less frequently in intron 3; the precise mechanisms by which these breakpoints arise and preferentially in PML intron 6 remain unsolved. To investigate the intrinsic properties of the PML intron sequences in vivo, we designed Saccharomyces cerevisiae strains containing human PML intron 6 or intron 3 sequences inserted in yeast chromosome V and measured gross chromosomal rearrangements (GCR). This approach provided evidence that intron 6 had a superior instability over intron 3 due to an intrinsic property of the sequence and identified the 3' end of intron 6 as the most susceptible to break. Using yeast strains invalidated for genes that control DNA replication, we show that this differential instability depended at least upon Rrm3, a DNA helicase, and Mrc1, the human claspin homolog. GCR induction by hydrogen peroxide, a general genotoxic agent, was also dependent on genetic context. We conclude that: 1) this yeast system provides an alternative approach to study in detail the properties of human sequences in a genetically controlled situation and 2) the different susceptibility to produce DNA breaks in intron 6 versus intron 3 of the human PML gene is likely due to an intrinsic property of the sequence and is under replication fork genetic control.


Subject(s)
DNA Replication , DNA-Binding Proteins/metabolism , Genomic Instability , Introns , Nuclear Proteins/genetics , Transcription Factors/genetics , Tumor Suppressor Proteins/genetics , Chromosome Breakpoints , Chromosome Mapping , DNA Breaks/drug effects , Gene Order , Genetic Loci , Humans , Hydrogen Peroxide/pharmacology , Leukemia, Promyelocytic, Acute/genetics , Leukemia, Promyelocytic, Acute/metabolism , Promyelocytic Leukemia Protein , Receptors, Retinoic Acid/genetics , Receptors, Retinoic Acid/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Translocation, Genetic
8.
Biochemistry ; 50(6): 932-44, 2011 Feb 15.
Article in English | MEDLINE | ID: mdl-21189045

ABSTRACT

Single-stranded DNA binding (SSB) proteins are essential proteins of DNA metabolism. We characterized the binding of the bacteriophage T4 SSB, Escherichia coli SSB, human replication protein A (hRPA), and human hSSB1 proteins onto model miniforks and double-stranded-single-stranded (ds-ss) junctions exposing 3' or 5' ssDNA overhangs. T4 SSB proteins, E. coli SSB proteins, and hRPA have a different binding preference for the ss tail exposed on model miniforks and ds-ss junctions. The T4 SSB protein preferentially binds substrates with 5' ss tails, whereas the E. coli SSB protein and hRPA show a preference for substrates with 3' ss overhangs. When interacting with ds-ss junctions or miniforks, the T4 SSB protein, E. coli SSB protein, and hRPA can destabilize not only the ds part of a ds-ss junction but also the daughter ds arm of a minifork. The T4 SSB protein displays these unwinding activities in a polar manner. Taken together, our results position the SSB protein as a potential key player in the reversal of a stalled replication fork and in gap repair-mediated repetitive sequence expansion.


Subject(s)
DNA-Binding Proteins/chemistry , DNA/chemistry , Binding Sites , DNA/biosynthesis , DNA/metabolism , DNA-Binding Proteins/metabolism , Escherichia coli/metabolism , Humans , Kinetics , Mitochondrial Proteins , Models, Biological , Protein Binding , Replication Protein A/chemistry , Replication Protein A/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...