Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Water Res ; 253: 121348, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38401472

ABSTRACT

Manganese oxide (MnOx) is receiving increased interest in the nutrient removal of constructed wetlands (CWs); however, its service effectiveness for simultaneous greenhouse gas (GHG) emissions reduction is still vague. In this study, three vertical flow CWs, i.e., volcanics (CCW), manganese sand uniformly mixing with volcanics (Mn-CW) and MnOx doped volcanics (MnV-CW), were constructed to investigate the underlying mechanisms of MnOx on nutrient removal enhancement and greenhouse gas (GHG) emissions reduction. The results showed that the MnOx doped volcanics optimized the oxidation-reduction potential surrounding the substrate (-164.0 ∼ +141.1 mv), and resulted in the lowest GHG emissions (CO2-equivalent) from MnV-CW, 16.8-36.5 % lower than that of Mn-CW and CCW. This was mainly ascribed to mitigation of N2O produced during the NO3--N reduction process, according to results of 15N stable isotope labeling. Analysis of the microbial community structure revealed that due to the optimized redox conditions through chemical doping of MnOx on volcanics, the abundance of microbe involved in denitrification and Mn-oxidizing process in the MnV-CW was significantly increased at genus level, which led to a higher Mn cycling efficiency between biogenic MnOx and Mn2+, and enhanced denitrification efficiency and N2O emission reduction. This study would help to understand and provide a preferable reference for future applications for manganese-based CW.


Subject(s)
Greenhouse Gases , Manganese Compounds , Manganese , Oxides , Wetlands , Nitrogen , Oxidation-Reduction , Denitrification
2.
J Environ Manage ; 345: 118840, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37604105

ABSTRACT

Phosphorus (P) recovery from wastewaters treated with constructed wetlands (CWs) could alleviate the current global P crisis but has not received sufficient attention. In this study, P transformation in different magnesium-based electrochemical CWs, including micro-electrolysis CW (M-CW), primary battery CW (P-CW), and electrolysis CW (E-CW), was thoroughly examined. The results revealed that the P removal efficiency was 53.0%, 75.8%, and 61.9% in the M-CW, E-CW, and P-CW, respectively. P mass balance analysis showed that P electrode deposition was the main reason for the higher P removal in the E-CW and P-CW. Significant differences were found between the E-CW and P-CW, P was distributed primarily on the magnesium plate in the P-CW but was distributed on the carbon plate in the E-CW. The E-CW had excellent P recovery capacity, and struvite was the major P recovery product. More intense magnesium plate corrosion and alkaline environment increased struvite precipitation in the E-CW, with the proportion of 61.6%. The results of functional microbial community analysis revealed that the abundance of electroactive bacteria was positively correlated with the deposition of struvite. This study provided an essential reference for the targeted electrochemical regulation of electric field processes and microorganisms in CWs to enhance P recovery.


Subject(s)
Waste Disposal, Fluid , Wastewater , Waste Disposal, Fluid/methods , Magnesium , Phosphorus/analysis , Struvite , Wetlands , Nitrogen/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...