Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Med Phys ; 50(12): 7996-8008, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37782074

ABSTRACT

BACKGROUND: Mixed photon-electron beam radiotherapy (MBRT) is a technique that combines the use of both photons and electrons in one single treatment plan to exploit their advantageous and complimentary characteristics. Compared to other photon treatment modalities, it has been shown that the MBRT technique contributes to better target coverage and organ-at-risk (OAR) sparing. However, the use of combined photons and electrons in one delivery makes the technique more complex and a well-established quality assurance (QA) protocol for MBRT is essential. PURPOSE: To investigate the feasibility of using MapCHECK and log file-dose reconstruction for MBRT plan verification and to recommend a patient-specific quality assurance (PSQA) protocol for MBRT. METHODS: MBRT plans were robustly optimized for five soft-tissue sarcoma (STS) patients. Each plan comprised step-and-shoot deliveries of a six MV photon beam and a combination of five electron beam energies at an SAD of 100 cm. The plans were delivered to the MapCHECK device with collapsed gantry angle and the 2D dose distributions at the detector depth were measured. To simulate the expected dose distribution delivered to the MapCHECK, a MapCHECK computational phantom was modeled in EGSnrc based on vendor-supplied blueprint information. The dose to the detectors in the model was scored using the DOSXYZnrc user code. The agreement between the measured and the simulated dose distribution was evaluated using 2D gamma analysis with a gamma criterion of 3%/2 mm and a low dose threshold of 10%. One of the plans was selected and delivered with a rotating gantry angle for trajectory log file collection. To evaluate the potential interlinac and intralinac differences, the plan was delivered repeatedly on three linacs. From the collected log files, delivery parameters were retrieved to recalculate the 3D dose distributions in the patient's anatomy with DOSXYZnrc. The recalculated mean dose to the clinical target volume (CTV) and OARs from all deliveries were computed and compared with the planned dose in terms of percentage difference. To validate the accuracy of log file-based QA, the log file-recalculated dose was also compared with film measurement. RESULTS: The agreement of the total dose distribution between the MapCHECK measurement and simulation showed gamma passing rates of above 97% for all five MBRT plans. In the log file-dose recalculation, the difference between the recalculated and the planned dose to the CTV and OARs was below 1% for all deliveries. No significant inter- or intralinac differences were observed. The log file-dose had a gamma passing rate of 98.6% compared to film measurement. CONCLUSION: Both the MapCHECK measurements and log file-dose recalculations showed excellent agreement with the expected dose distribution. This study demonstrates the potential of using MapCHECK and log files as MBRT QA tools.


Subject(s)
Electrons , Radiotherapy, Intensity-Modulated , Humans , Radiotherapy Dosage , Radiotherapy, Intensity-Modulated/methods , Radiotherapy Planning, Computer-Assisted/methods , Phantoms, Imaging
2.
Med Phys ; 50(10): 6502-6513, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37681990

ABSTRACT

BACKGROUND: Mixed electron-photon beam radiation therapy (MBRT) is an emerging technique in which external electron and photon beams are simultaneously optimized into a single treatment plan. MBRT exploits the steep dose falloff and high surface dose of electrons while maintaining target conformity by leveraging the sharp penumbra of photons. PURPOSE: This study investigates the dosimetric benefits of MBRT for soft tissue sarcoma (STS) patients. MATERIAL AND METHODS: A retrospective cohort of 22 STS of the lower extremity treated with conventional photon-based Volumetric Modulated Arc Therapy (VMAT) were replanned with MBRT. Both VMAT and MBRT treatments were planned on the Varian TrueBeam linac using the Millenium multi-leaf collimator. No electron applicator, cutout or additional collimating devices were used for electron beams of MBRT plans. MBRT plans were optimized to use a combination of 6 MV photons and five electron energies (6, 9, 12, 16, 20 MeV) by a robust column generation algorithm. Electron beams in this study were planned at standard 100 cm source-axis distance (SAD). The dose to the clinical target volume (CTV), bone, normal tissue strip and other organs-at-risk (OARs) were compared using a Wilcoxon signed-rank test. RESULTS: As part of the original VMAT treatment, tissue-equivalent bolus was required in 10 of the 22 patients. MBRT plans did not require bolus by virtue of the higher electron entrance dose. CTV coverage by the prescription dose was found to be clinically equivalent between plans of either modality: V 50Gy $V_{\text{50Gy}}$ (MBRT) = 97.9 ± 0.2% versus V 50Gy $V_{\text{50Gy}}$ (VMAT) = 98.1 ± 0.6% (p=0.34). Evaluating the absolute paired difference between doses to OARs in MBRT and VMAT plans, we observed lower V 20Gy $V_{\text{20Gy}}$ to normal tissue in MBRT plans by 14.9 ± 3.2% ( p < 10 - 6 $p<10^{-6}$ ). Similarly, V 50Gy $V_{\text{50Gy}}$ to bone was found to be decreased by 8.2 ± 4.0% ( p < 10 - 3 $p<10^{-3}$ ) of the bone volume. CONCLUSION: For STS with subcutaneous involvement, MBRT offers statistically significant sparing of OARs without sacrificing target coverage when compared to VMAT. MBRT plans are deliverable on conventional linacs without the use of electron applicators, shortened source-to-surface distance (SSD) or bolus. This study shows that MBRT is a logistically feasible technique with clear dosimetric benefits.


Subject(s)
Radiotherapy, Intensity-Modulated , Sarcoma , Humans , Electrons , Retrospective Studies , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy Dosage , Sarcoma/radiotherapy , Organs at Risk , Radiotherapy, Intensity-Modulated/methods
3.
Int J Radiat Oncol Biol Phys ; 117(3): 763-773, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37150259

ABSTRACT

PURPOSE: The intraoperative radiotherapy in newly diagnosed glioblastoma multiforme (INTRAGO) clinical trial assesses survival in patients with glioblastoma treated with intraoperative radiation therapy (IORT) using the INTRABEAM. Treatment planning for INTRABEAM relies on vendor-provided in-water depth dose curves obtained according to the TARGeted Intraoperative radioTherapy (TARGIT) dosimetry protocol. However, recent studies have shown discrepancies between the estimated TARGIT and delivered doses. This work evaluates the effect of the choice of dosimetry formalism on organs at risk (OAR) doses. METHODS AND MATERIALS: A treatment planning framework for INTRABEAM was developed to retrospectively calculate the IORT dose in 8 INTRAGO patients. These patients received an IORT prescription dose of 20 to 30 Gy in addition to external beam radiation therapy. The IORT dose was obtained using (1) the TARGIT method; (2) the manufacturer's V4.0 method; (3) the CQ method, which uses an ionization chamber Monte Carlo (MC) calculated factor; (4) MC dose-to-water; and (5) MC dose-to-tissue. The IORT dose was converted to 2 Gy fractions equivalent dose. RESULTS: According to the TARGIT method, the OAR dose constraints were respected in all cases. However, the other formalisms estimated a higher mean dose to OARs and revealed 1 case where the constraint for the brain stem was exceeded. The addition of the external beam radiation therapy and TARGIT IORT doses resulted in 10 cases of OARs exceeding the dose constraints. The more accurate MC calculation of dose-to-tissue led to the highest dosimetric differences, with 3, 3, 2, and 2 cases (out of 8) exceeding the dose constraint to the brain stem, optic chiasm, optic nerves, and lenses, respectively. Moreover, the mean cumulative dose to brain stem exceeded its constraint of 66 Gy with the MC dose-to-tissue method, which was not evident with the current INTRAGO clinical practice. CONCLUSIONS: The current clinical approach of calculating the IORT dose with the TARGIT method may considerably underestimate doses to nearby OARs. In practice, OAR dose constraints may have been exceeded, as revealed by more accurate methods.


Subject(s)
Breast Neoplasms , Glioblastoma , Female , Humans , Glioblastoma/radiotherapy , Glioblastoma/surgery , Organs at Risk/diagnostic imaging , Organs at Risk/radiation effects , Radiometry , Radiotherapy Dosage , Retrospective Studies
4.
Phys Med Biol ; 66(21)2021 11 05.
Article in English | MEDLINE | ID: mdl-34663769

ABSTRACT

OBJECTIVE: The relative TG-43 dosimetry parameters of the INTRABEAM (Carl Zeiss Meditec AG, Jena, Germany) bare probe were recently reported by Ayala Alvarezet al(2020Phys. Med. Biol.65245041). The current study focuses on the dosimetry characterization of the INTRABEAM source with the eight available spherical applicators according to the TG-43 formalism using Monte Carlo (MC) simulations. APPROACH: This report includes the calculated dose-rate conversion coefficients that determine the absolute dose rate to water at a reference point of 10 mm from the applicator surface, based on calibration air-kerma rate measurements at 50 cm from the source on its transverse plane. Since the air-kerma rate measurements are not yet provided from a standards laboratory for the INTRABEAM, the values in the present study were calculated with MC. This approach is aligned with other works in the search for standardization of the dosimetry of electronic brachytherapy sources. As a validation of the MC model, depth dose calculations along the source axis were compared with calibration data from the source manufacturer. MAIN RESULTS: The calculated dose-rate conversion coefficients were 434.0 for the bare probe, and 683.5, 548.3, 449.9, 376.5, 251.0, 225.6, 202.8, and 182.6 for the source with applicators of increasing diameter from 15 to 50 mm, respectively. The radial dose and the 2D anisotropy functions of the TG-43 formalism were also obtained and tabulated in this document. SIGNIFICANCE: This work presents the data required by a treatment planning system for the characterization of the INTRABEAM system in the context of intraoperative radiotherapy applications.


Subject(s)
Brachytherapy , Radiometry , Calibration , Monte Carlo Method , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted
5.
Med Phys ; 48(9): 5382-5395, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34224144

ABSTRACT

PURPOSE: In previous work, we demonstrated that mixed electron-photon radiation therapy (MBRT) produces treatment plans with improved normal tissue sparing and similar target coverage, when compared to photon-only plans. The purpose of this work was to validate the MBRT delivery process on a Varian TrueBeam accelerator and laying the groundwork for a patient-specific quality assurance (QA) protocol based on ion chamber point measurements and 2D film measurements. METHODS: MC beam models used to calculate the MBRT dose distributions of each modality (photons/electrons) were validated with a single-angle beam MBRT treatment plan delivered on a slab of Solid Water phantom with a film positioned at a depth of 2 cm. The measured film absorbed dose was compared to the calculated dose. To validate clinical deliveries, a polymethyl methacrylate (PMMA) cylinder was machined and holes were made to fit an ionization chamber. A complex MBRT plan involving a photon arc and three electron delivery angles was created with the aim of reproducing a clinically realistic dose distribution in typical soft tissue sarcoma tumours of the extremities. The treatment plan was delivered on the PMMA cylinder. Point measurements were taken with an Exradin A1SL chamber at two nominal depths: 1.4 cm and 2.1 cm. The plan was also delivered on a second identical phantom with an insert at 2 cm depth, where a film was placed. An existing EGSnrc user-code, SPRRZnrc, was modified to calculate the stopping power ratios between any materials in the same voxelized geometry used for dose calculation purposes. This modified code, called SPRXYZnrc, was used to calculate a correction factor, k MBRT , accounting for the differences in electron fluence spectrum at the measurement point compared to that at reference conditions. The uncertainty associated with neglecting potential ionization chamber fluence perturbation correction factors using this approach was estimated. RESULTS: The film measurement from the Solid Water phantom treatment plan was in good agreement with the simulated dose distribution, with a gamma pass rate of 96.1% for a 3%/2 mm criteria. For the PMMA phantom delivery, for the same gamma criteria, the pass rate was 97.3%. The ion chamber measurements of the total delivered dose agreed with the MC-simulated dose within 2.1%. The beam quality correction factors amounted to, at most, a 4% correction on the ion chamber measurement. However, individual contribution of low electron energies proved difficult to precisely measure due to their steep dose gradients, with disagreements of up to 28% ± 15% at 2.1 cm depth (6 MeV). Ion chamber measurement procedure of electron beams was achieved in less than 5 min, and the entire validation process including phantom setup was performed in less than 30 min. CONCLUSION: The agreement between measured and simulated MBRT doses indicates that the dose distributions obtained from the MBRT treatment planning algorithm are realistically achievable. The SPRXYZnrc MC code allowed for convenient calculations of k MBRT simultaneously with the dose distributions, laying the groundwork for patient-specific QA protocol practical for clinical use. Further investigation is needed to establish the accuracy of our ionization chamber correction factors k MBRT calculations at low electron energies.


Subject(s)
Electrons , Radiometry , Algorithms , Humans , Monte Carlo Method , Phantoms, Imaging , Photons , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted
6.
Phys Med ; 88: 167-174, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34280729

ABSTRACT

PURPOSE: To determine the field output correction factors of the radiophotoluminescence glass dosimeter (RPLGD) in parallel and perpendicular orientations with reference to CC01, the ionization chamber. METHODS: The dose to a small water volume and the sensitive volume of the RPLGD and the IBA-CC01 were determined for 6-MV, 100-cm SAD, 10-cm depth using egs_chamber user-code. The RPLGD in perpendicular and parallel orientations to the beam axis were studied. The field output correction factors of each detector for 0.5 × 0.5 to 10 × 10 cm2 field sizes were determined. These field output correction factors were validated by comparing field output factors against data determined from IAEA-AAPM TRS-483 code of practice. RESULTS: The field output correction factors of all detectors were within 5% for field sizes down to 0.8 × 0.8 cm2. For 0.5 × 0.5 cm2, the field output correction factors of CC01, RPLGD in perpendicular and parallel orientations differed from unity by 14%, 19%, and 5%, respectively. The percentage difference between field output factors determined using RPLGD and CC01 data, corrected using the field output correction factors determined in this work and measurements with CC01 data corrected using TRS-483, was less than 3% for all field sizes, except for the smallest field size of RPLGD in perpendicular orientation and the CC01. CONCLUSIONS: The field output correction factors of RPLGD and CC01 are reported. The validation proves that RPLGD in parallel orientation combined with the field output correction factors is the most suitable for determining the field output factors for the smallest field used in this study.


Subject(s)
Radiation Dosimeters , Radiometry , Glass , Photons
7.
Phys Med Biol ; 65(24): 245041, 2020 12 22.
Article in English | MEDLINE | ID: mdl-33137796

ABSTRACT

The INTRABEAM system (Carl Zeiss Meditec AG, Jena, Germany) is an electronic brachytherapy (eBT) device designed for intraoperative radiotherapy applications. To date, the INTRABEAM x-ray source has not been characterized according to the AAPM TG-43 specifications for brachytherapy sources. This restricts its modelling in commercial treatment planning systems (TPSs), with the consequence that the doses to organs at risk are unknown. The aim of this work is to characterize the INTRABEAM source according to the TG-43 brachytherapy dosimetry protocol. The dose distribution in water around the source was determined with Monte Carlo (MC) calculations. For the validation of the MC model, depth dose calculations along the source longitudinal axis were compared with measurements using a soft x-ray ionization chamber (PTW 34013) and two synthetic diamond detectors (microDiamond PTW TN60019). In our results, the measurements in water agreed with the MC model calculations within uncertainties. The use of the microDiamond detector yielded better agreement with MC calculations, within estimated uncertainties, compared to the ionization chamber at points of steeper dose gradients. The radial dose function showed a steep fall-off close to the INTRABEAM source ([Formula: see text]10 mm) with a gradient higher than that of commonly used brachytherapy radionuclides (192Ir, 125I and 103Pd), with values of 2.510, 1.645 and 1.232 at 4, 6 and 8 mm, respectively. The radial dose function partially flattens at larger distances with a fall-off comparable to that of the Xoft Axxent® (iCAD, Inc., Nashua, NH) eBT system. The simulated 2D polar anisotropy close to the bare probe walls showed deviations from unity of up to 55% at 10 mm and 155°. This work presents the MC calculated TG-43 parameters for the INTRABEAM, which constitute the necessary data for the characterization of the source as required by a TPS used in clinical dose calculations.


Subject(s)
Brachytherapy , Monte Carlo Method , Radiometry , Anisotropy , Humans , Intraoperative Period , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Uncertainty
8.
Phys Med ; 76: 7-15, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32569954

ABSTRACT

Owing to its short computation time and simplicity, the Ray-Tracing algorithm (RAT) has long been used to calculate dose distributions for the CyberKnife system. However, it is known that RAT fails to fully account for tissue heterogeneity and is therefore inaccurate in the lung. The aim of this study is to make a dosimetric assessment of 219 non-small cell lung cancer CyberKnife plans by recalculating their dose distributions using an independent Monte Carlo (MC) method. For plans initially calculated by RAT without heterogeneity corrections, target coverage was found to be significantly compromised when considering MC doses. Only 35.4% of plans were found to comply to their prescription doses. If the normal tissue dose limits were respected in the treatment planning dose, the MC recalculated dose did not exceed these limits in over 97% of the plans. Comparison of RAT and recalculated-MC doses confirmed the overestimation of RAT doses observed in previous studies. An inverse correlation between the RAT/MC dose ratio and the target size was also found to be statistically significant (p<10-4), consistent with other studies. In addition, the inaccuracy and variability in target coverage incurred from dose calculations using RAT without heterogeneity corrections was demonstrated. On average, no clinically relevant differences were observed between MC-calculated dose-to-water and dose-to-medium for all tissues investigated (⩽1%). Patients receiving a dose D95% larger than 119 Gy in EQD210 (or ≈52 Gy in 3 fractions) as recalculated by MC were observed to have significantly superior loco-regional progression-free survival rates (p=0.02) with a hazard ratio of 3.45 (95%CI: 1.14-10.5).


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Radiosurgery , Robotic Surgical Procedures , Algorithms , Carcinoma, Non-Small-Cell Lung/radiotherapy , Humans , Lung , Lung Neoplasms/radiotherapy , Lung Neoplasms/surgery , Monte Carlo Method , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted
9.
Med Phys ; 47(7): 3103-3112, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32198933

ABSTRACT

INTRODUCTION: Trajectory-based volumetric modulated arc therapy (tr-VMAT) treatment plans enable the option for noncoplanar delivery yielding steeper dose gradients and increased sparing of critical structures compared to conventional treatment plans. The addition of translational couch motion to shorten the effective source-to-axis distance (SAD) may result in improved delivery precision and an increased effective dose rate. In this work, tr-VMAT treatment plans using a noncoplanar "baseball stitch" trajectory were implemented, applied to patients presented with cranial targets, and compared to the clinical treatment plans. METHODS: A treatment planning workflow was implemented: (a) beamlet doses were calculated for control points defined along a baseball stitch trajectory using a collapsed-cone convolution-superposition algorithm; (b) VMAT treatment plans were optimized using the column generation approach; (c) a final dose distribution was calculated in Varian Eclipse using the analytical anisotropic algorithm by importing the optimized treatment plan parameters. Tr-VMAT plans were optimized for ten patients presented with cranial targets at both standard and shortened SAD, and compared to the clinical treatment plans through isodose distributions, dose-volume histograms, and dosimetric indices. The control point specifications of the optimized tr-VMAT plans were used to estimate the delivery time. RESULTS: The optimized tr-VMAT plans with both shortened and standard SAD delivery yielded a comparable plan quality to the clinical treatment plans. A statistically significant benefit was observed for dose gradient index and monitor unit efficiency for shortened SAD tr-VMAT plans, while improved target volume conformity was observed for the clinical treatment plan (P ≤ 0.05). A clear dosimetric benefit was not demonstrated between tr-VMAT delivery at shortened SAD compared to standard SAD, but shortened SAD delivery yielded a fraction size-dependent reduction in the estimated delivery time. CONCLUSION: The implementation of "baseball stitch" tr-VMAT treatment plans to patients presented with cranial targets demonstrated comparable plan quality to clinical treatment plans. The delivery at shortened SAD produced a fraction size-dependent decrease in estimated delivery time.


Subject(s)
Radiotherapy, Intensity-Modulated , Algorithms , Humans , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Skull
10.
Radiother Oncol ; 144: 201-208, 2020 03.
Article in English | MEDLINE | ID: mdl-32044418

ABSTRACT

BACKGROUND AND PURPOSE: Previous literature suggests that the dose proximally outside the PTV could have an impact on the incidence of distant metastasis (DM) after SBRT in stage I NSCLC patients. We investigated this observation (along with local failure) in deliveries made by different treatment modalities: robotic mounted linac SBRT (CyberKnife) vs conventional SBRT (VMAT/CRT). MATERIALS AND METHODS: This study included 422 stage I NSCLC patients from 2 institutions who received SBRT: 217 treated conventionally and 205 with CyberKnife. The dose behavior outside the PTV of both sub-cohorts were compared by analyzing the mean dose in continuous shells extending 1, 2, 3, …, 100 mm from the PTV. Kaplan-Meier analysis was performed between the two sub-cohorts with respect to DM-free survival and local progression-free survival. A multivariable Cox proportional hazards model was fitted to the combined cohort (n = 422) with respect to DM incidence and local failure. RESULTS: The shell-averaged dose fall-off beyond the PTV was found to be significantly more modest in CyberKnife plans than in conventional SBRT plans. In a 30 mm shell around the PTV, the mean dose delivered with CyberKnife (38.1 Gy) is significantly larger than with VMAT/CRT (22.8 Gy, p<10-8). For 95% of CyberKnife plans, this region receives a mean dose larger than the 21 Gy threshold dose discovered in our previous study. In contrast, this occurs for only 75% of VMAT/CRT plans. The DM-free survival of the entire CyberKnife cohort is superior to that of the 25% of VMAT/CRT patients receiving less than the threshold dose (VMAT/CRT<21Gy), with a hazard ratio of 5.3 (95% CI: 3.0-9.3, p<10-8). The 2 year DM-free survival rates were 87% (95% CI: 81%-91%) and 44% (95% CI: 28%-58%) for CyberKnife and the below-threshold dose conventional cohorts, respectively. A multivariable analysis of the combined cohort resulted in the confirmation that threshold dose was a significant predictor of DM(HR = 0.28, 95% CI: 0.15-0.55, p<10-3) when adjusted for other clinical factors. CyberKnife was also found to be superior to the entire VMAT/CRT with respect to local control (HR = 3.44, CI: 1.6-7.3). The 2-year local progression-free survival rates for the CyberKnife cohort and the VMAT/CRT cohort were 96% (95% CI: 92%-98%) and 88% (95% CI: 82%-92%) respectively. CONCLUSIONS: In standard-of-care CyberKnife treatments, dose distributions that aid distant control are achieved 95% of the time. Although similar doses could be physically achieved by conventional SBRT, this is not always the case with current prescription practices, resulting in worse DM outcomes for 25% of conventional SBRT patients. Furthermore, CyberKnife was found to provide superior local control compared to VMAT/CRT.


Subject(s)
Lung Neoplasms , Radiosurgery , Radiotherapy, Intensity-Modulated , Humans , Lung Neoplasms/radiotherapy , Lung Neoplasms/surgery , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted
SELECTION OF CITATIONS
SEARCH DETAIL
...