Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 5130, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38879536

ABSTRACT

Intron retention (IR) is the most common alternative splicing event in Arabidopsis. An increasing number of studies have demonstrated the major role of IR in gene expression regulation. The impacts of IR on plant growth and development and response to environments remain underexplored. Here, we found that IR functions directly in gene expression regulation on a genome-wide scale through the detainment of intron-retained transcripts (IRTs) in the nucleus. Nuclear-retained IRTs can be kept away from translation through this mechanism. COP1-dependent light modulation of the IRTs of light signaling genes, such as PIF4, RVE1, and ABA3, contribute to seedling morphological development in response to changing light conditions. Furthermore, light-induced IR changes are under the control of the spliceosome, and in part through COP1-dependent ubiquitination and degradation of DCS1, a plant-specific spliceosomal component. Our data suggest that light regulates the activity of the spliceosome and the consequent IRT nucleus detainment to modulate photomorphogenesis through COP1.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Cell Nucleus , Gene Expression Regulation, Plant , Introns , Light , Spliceosomes , Ubiquitin-Protein Ligases , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis/radiation effects , Arabidopsis/metabolism , Introns/genetics , Gene Expression Regulation, Plant/radiation effects , Spliceosomes/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Cell Nucleus/metabolism , Seedlings/growth & development , Seedlings/genetics , Seedlings/radiation effects , Seedlings/metabolism , Alternative Splicing , Ubiquitination
3.
Nat Commun ; 15(1): 2262, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38480732

ABSTRACT

The inter-subspecific indica-japonica hybrid rice confer potential higher yield than the widely used indica-indica intra-subspecific hybrid rice. Nevertheless, the utilization of this strong heterosis is currently hindered by asynchronous diurnal floret opening time (DFOT) of indica and japonica parental lines. Here, we identify OsMYB8 as a key regulator of rice DFOT. OsMYB8 induces the transcription of JA-Ile synthetase OsJAR1, thereby regulating the expression of genes related to cell osmolality and cell wall remodeling in lodicules to promote floret opening. Natural variations of OsMYB8 promoter contribute to its differential expression, thus differential transcription of OsJAR1 and accumulation of JA-Ile in lodicules of indica and japonica subspecies. Furthermore, introgression of the indica haplotype of OsMYB8 into japonica effectively promotes DFOT in japonica. Our findings reveal an OsMYB8-OsJAR1 module that regulates differential DFOT in indica and japonica, and provide a strategy for breeding early DFOT japonica to facilitate breeding of indica-japonica hybrids.


Subject(s)
Genes, Plant , Isoleucine/analogs & derivatives , Oryza , Plant Breeding , Hybrid Vigor , Cyclopentanes/metabolism , Oryza/metabolism
4.
New Phytol ; 239(4): 1505-1520, 2023 08.
Article in English | MEDLINE | ID: mdl-37306069

ABSTRACT

Flowering time is a key agronomic trait determining environmental adaptation and yield potential of crops. The regulatory mechanisms of flowering in maize still remain rudimentary. In this study, we combine expressional, genetic, and molecular studies to identify two homologous SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) transcription factors ZmSPL13 and ZmSPL29 as positive regulators of juvenile-to-adult vegetative transition and floral transition in maize. We show that both ZmSPL13 and ZmSPL29 are preferentially expressed in leaf phloem, vegetative and reproductive meristem. We show that vegetative phase change and flowering time are moderately delayed in the Zmspl13 and Zmspl29 single knockout mutants and more significantly delayed in the Zmspl13/29 double mutants. Consistently, the ZmSPL29 overexpression plants display precocious vegetative phase transition and floral transition, thus early flowering. We demonstrate that ZmSPL13 and ZmSPL29 directly upregulate the expression of ZmMIR172C and ZCN8 in the leaf, and of ZMM3 and ZMM4 in the shoot apical meristem, to induce juvenile-to-adult vegetative transition and floral transition. These findings establish a consecutive signaling cascade of the maize aging pathway by linking the miR156-SPL and the miR172-Gl15 regulatory modules and provide new targets for genetic improvement of flowering time in maize cultivars.


Subject(s)
Flowers , Plant Proteins , Plant Proteins/metabolism , Flowers/physiology , Zea mays/genetics , Zea mays/metabolism , Plant Leaves/metabolism , Meristem/genetics , Meristem/metabolism , Gene Expression Regulation, Plant
5.
Plant Biotechnol J ; 21(2): 381-390, 2023 02.
Article in English | MEDLINE | ID: mdl-36342212

ABSTRACT

Stigma exsertion rate (SER) of the male sterile line is a key limiting factor for hybrid seed production in rice. Although a large number of quantitative trait loci associated with SER have been reported, few genes have been molecularly cloned and functionally characterized, severely hindering the genetic improvement of SER of the male sterile line and the breeding efficiency of hybrid rice. In this study, we identified three grain shape regulatory genes, GS3, GW8 and GS9, as potential candidate genes for targeted manipulation of grain shape and SER. We show that simultaneously knocking out these three genes could effectively increase SER by increasing the ratio of spikelet length/spikelet width and length of stigma and style, without negative impacts on other agronomic traits. Cellular examination and transcriptomic analyses revealed a role of these genes in coordinated regulation of transverse and longitudinal cell division in the pistils. Moreover, we demonstrate that targeted manipulation of these grain shape genes could significantly improve the outcrossing rate in both the ZH11 (a japonica variety) and Zhu6S (an indica male sterile line) backgrounds. Our results provide new insights into the mechanisms of rice SER regulation and develop an effective strategy to improve SER and out-crossing rate in rice, thus facilitating hybrid rice production.


Subject(s)
Oryza , Oryza/genetics , Oryza/metabolism , Plant Breeding/methods , Seeds/genetics , Quantitative Trait Loci/genetics , Edible Grain/genetics
6.
J Integr Plant Biol ; 64(11): 2097-2110, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36029156

ABSTRACT

Light signaling precisely controls photomorphogenic development in plants. PHYTOCHROME INTERACTING FACTOR 4 and 5 (PIF4 and PIF5) play critical roles in the regulation of this developmental process. In this study, we report CONSTITUTIVELY PHOTOMORPHOGENIC 1 SUPPRESSOR 6 (CSU6) functions as a key regulator of light signaling. Loss of CSU6 function largely rescues the cop1-6 constitutively photomorphogenic phenotype. CSU6 promotes hypocotyl growth in the dark, but inhibits hypocotyl elongation in the light. CSU6 not only associates with the promoter regions of PIF4 and PIF5 to inhibit their expression in the morning, but also directly interacts with both PIF4 and PIF5 to repress their transcriptional activation activity. CSU6 negatively controls a group of PIF4- and PIF5-regulated gene expressions. Mutations in PIF4 and/or PIF5 are epistatic to the loss of CSU6, suggesting that CSU6 acts upstream of PIF4 and PIF5. Taken together, CSU6 promotes light-inhibited hypocotyl elongation by negatively regulating PIF4 and PIF5 transcription and biochemical activity.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Phytochrome , Hypocotyl/metabolism , Phytochrome/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Coat Protein Complex I/genetics , Coat Protein Complex I/metabolism , Factor V/genetics , Factor V/metabolism , Gene Expression Regulation, Plant , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism
7.
Front Plant Sci ; 13: 836519, 2022.
Article in English | MEDLINE | ID: mdl-35222493

ABSTRACT

Light-triggered transcriptome reprogramming is critical for promoting photomorphogenesis in Arabidopsis seedlings. Nonetheless, recent studies have shed light on the importance of alternative pre-mRNA splicing (AS) in photomorphogenesis. The splicing factors splicing factor for phytochrome signaling (SFPS) and reduced red-light responses in cry1cry2 background1 (RRC1) are involved in the phytochrome B (phyB) signaling pathway and promote photomorphogenesis by controlling pre-mRNA splicing of light- and clock-related genes. However, splicing factors that serve as repressors in phyB signaling pathway remain unreported. Here, we report that the splicing factor SWELLMAP 2 (SMP2) suppresses photomorphogenesis in the light. SMP2 physically interacts with phyB and colocalizes with phyB in photobodies after light exposure. Genetic analyses show that SMP2 antagonizes phyB signaling to promote hypocotyl elongation in the light. The homologs of SMP2 in yeast and human belong to second-step splicing factors required for proper selection of the 3' splice site (3'SS) of an intron. Notably, SMP2 reduces the abundance of the functional REVEILLE 8 a (RVE8a) form, probably by determining the 3'SS, and thereby inhibits RVE8-mediated transcriptional activation of clock genes containing evening elements (EE). Finally, SMP2-mediated reduction of functional RVE8 isoform promotes phytochrome interacting factor 4 (PIF4) expression to fine-tune hypocotyl elongation in the light. Taken together, our data unveil a phyB-interacting splicing factor that negatively regulates photomorphogenesis, providing additional information for further mechanistic investigations regarding phyB-controlled AS of light- and clock-related genes.

8.
aBIOTECH ; 2(2): 117-130, 2021 Jun.
Article in English | MEDLINE | ID: mdl-36304757

ABSTRACT

phytochrome B (phyB) acts as the red light photoreceptor and negatively regulates the growth-promoting factor PHYTOCHROME INTERACTING 4 (PIF4) through a direct physical interaction, which in turn changes the expression of a large number of genes. phyB-PIF4 module regulates a variety of biological and developmental processes in plants. In this study, we demonstrate that B-BOX PROTEIN 11 (BBX11) physically interacts with both phyB and PIF4. BBX11 negatively regulates PIF4 accumulation as well as its biochemical activity, consequently leading to the repression of PIF4-controlled genes' expression and promotion of photomorphogenesis in the prolonged red light. This study reveals a regulatory mechanism that mediates red light signal transduction and sheds a light on phyB-PIF4 module in promoting red light-dependent photomorphognenesis. Supplementary Information: The online version contains supplementary material available at 10.1007/s42994-021-00037-2.

9.
Plant Commun ; 1(5): 100045, 2020 09 14.
Article in English | MEDLINE | ID: mdl-33367254

ABSTRACT

Light is the most important environmental factor affecting many aspects of plant development. In this study, we report that B-box protein 11 (BBX11) acts as a positive regulator of red light signaling. BBX11 loss-of-function mutant seedlings display significantly elongated hypocotyls under conditions of both red light and long day, whereas BBX11 overexpression causes markedly shortened hypocotyls under various light states. BBX11 binds to the HY5 promoter to activate its transcription, while both BBX21 and HY5 associate with the promoter of BBX11 to positively regulate its expression. Taken together, our results reveal positive feedback regulation of photomorphogenesis consisting of BBX11, BBX21, and HY5, thus substantiating a transcriptional regulatory mechanism in the response of plants to light during normal development.


Subject(s)
Arabidopsis Proteins/physiology , Arabidopsis/growth & development , Basic-Leucine Zipper Transcription Factors/physiology , Phototropism , Transcription Factors, General/physiology , Transcription Factors/physiology , Arabidopsis/metabolism , Arabidopsis/radiation effects , Chromatin Immunoprecipitation , Electrophoretic Mobility Shift Assay , Feedback, Physiological , Gene Expression Regulation, Plant , Real-Time Polymerase Chain Reaction
10.
Plant J ; 104(2): 377-390, 2020 10.
Article in English | MEDLINE | ID: mdl-32654323

ABSTRACT

Light is one of the key environmental cues controlling photomorphogenic development in plants. A group of B-box (BBX) proteins play critical roles in this developmental process through diverse regulatory mechanisms. In this study we report that BBX29 acts as a negative regulator of light signaling. BBX29 interacts with CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1) and undergoes COP1-mediated degradation in the dark. Mutant seedlings with loss of BBX29 function show shortened hypocotyls, while transgenic plants overexpressing BBX29 display elongated hypocotyls in the light. Both BBX28 and BBX29 interfere with the binding of ELONGATED HYPOCOTYL 5 (HY5) to the promoters of BBX30 and BBX31, consequently leading to the upregulation of their transcript levels. BBX30 and BBX31 associate with the promoter regions of BBX28 and BBX29, which in turn promotes the expression of these genes. Taken together, this study reveals a transcriptional feedback loop consisting of BBX28, BBX29, BBX30, BBX31, and HY5 that serves to fine-tune photomorphogenesis in response to light in plants.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/physiology , Feedback, Physiological/physiology , Hypocotyl/growth & development , Arabidopsis Proteins/genetics , Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Gene Expression Regulation, Plant , Hypocotyl/genetics , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Mutation , Plants, Genetically Modified , Promoter Regions, Genetic , Transcription Factors/genetics , Transcription Factors/metabolism , Transcription Factors, General/genetics , Transcription Factors, General/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
11.
Proc Natl Acad Sci U S A ; 116(51): 26049-26056, 2019 12 17.
Article in English | MEDLINE | ID: mdl-31776262

ABSTRACT

Phytochrome B (phyB) absorbs red light signals and subsequently initiates a set of molecular events in plant cells to promote photomorphogenesis. Here we show that phyB directly interacts with B-BOX CONTAINING PROTEIN 4 (BBX4), a positive regulator of red light signaling, and positively controls its abundance in red light. BBX4 associates with PHYTOCHROME INTERACTING FACTOR 3 (PIF3) and represses PIF3 transcriptional activation activity and PIF3-controlled gene expression. The degradation of BBX4 in darkness is dependent on CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1) and the 26S proteasome system. Collectively, BBX4 acts as a key component of the phyB-PIF3-mediated signaling module and fine tunes the red light action. phyB promotes the accumulation of BBX4, which in turn serves to repress PIF3 action through direct physical interaction to promote photomorphogenic development in red light.


Subject(s)
Arabidopsis Proteins/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism , Light , Morphogenesis/radiation effects , Phytochrome B/metabolism , Transcription Factors/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Basic Helix-Loop-Helix Transcription Factors/genetics , Darkness , Gene Expression Regulation, Plant , Phytochrome B/genetics , Plants, Genetically Modified , Ubiquitin-Protein Ligases/metabolism
12.
Plant Physiol ; 180(1): 497-508, 2019 05.
Article in English | MEDLINE | ID: mdl-30765480

ABSTRACT

Light-mediated seedling development is coordinately controlled by a variety of key regulators. Here, we identified two B-box (BBX)-containing proteins, BBX30 and BBX31, as repressors of photomorphogenesis. ELONGATED HYPOCOTYL5, a central regulator of light signaling, directly binds to the G-box cis-element present in the promoters of BBX30 and BBX31 and negatively controls their transcription levels in the light. Seedlings with mutations in BBX30 or BBX31 are hypersensitive to light, whereas the overexpression of BBX30 or BBX31 leads to hypo-photomorphogenic growth in the light. Furthermore, transgenic and phenotypic analysis revealed that the B-box domain of BBX30 or BBX31 is essential for their respective functioning in the regulation of photomorphogenic development in plants. In conclusion, BBX30 and BBX31 act as key negative regulators of light signaling, and their transcription is repressed by ELONGATED HYPOCOTYL5 through directly associating with their promoters.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/physiology , Basic-Leucine Zipper Transcription Factors/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Transcription Factors/metabolism , Arabidopsis Proteins/genetics , Basic-Leucine Zipper Transcription Factors/genetics , Flowers/genetics , Gene Expression Regulation, Plant , Intracellular Signaling Peptides and Proteins/genetics , Light , Mutation , Plants, Genetically Modified , Promoter Regions, Genetic , Protein Domains , Seedlings/genetics , Seedlings/growth & development , Transcription Factors/genetics
13.
Front Plant Sci ; 9: 560, 2018.
Article in English | MEDLINE | ID: mdl-29755498

ABSTRACT

Premature leaf senescence (PLS), which has a significant impact on yield, is caused by various underlying mechanisms. Glycosyltransferases, which function in glycosyl transfer from activated nucleotides to aglycones, are involved in diverse biological processes, but their roles in rice leaf senescence remain elusive. Here, we isolated and characterized a leaf senescence-related gene from the Premature Leaf Senescent mutant (pls2). The mutant phenotype began with leaf yellowing at tillering and resulted in PLS during the reproductive stage. Leaf senescence was associated with an increase in hydrogen peroxide (H2O2) content accompanied with pronounced decreases in net photosynthetic rate, stomatal conductance, and transpiration rate. Map-based cloning revealed that a mutation in LOC_Os03g15840 (PLS2), a putative glycosyltransferase- encoding gene, was responsible for the defective phenotype. PLS2 expression was detected in all tissues surveyed, but predominantly in leaf mesophyll cells. Subcellular localization of the PLS2 was in the endoplasmic reticulum. The pls2 mutant accumulated higher levels of sucrose together with decreased expression of sucrose metabolizing genes compared with wild type. These data suggested that the PLS2 allele is essential for normal leaf senescence and its mutation resulted in PLS.

14.
Plant Cell ; 30(4): 889-906, 2018 04.
Article in English | MEDLINE | ID: mdl-29610210

ABSTRACT

Panicle size is a critical determinant of grain yield in rice (Oryza sativa) and other grain crops. During rice growth and development, spikelet abortion often occurs at either the top or the basal part of the panicle under unfavorable conditions, causing a reduction in fertile spikelet number and thus grain yield. In this study, we report the isolation and functional characterization of a panicle abortion mutant named panicle apical abortion1-1 (paab1-1). paab1-1 exhibits degeneration of spikelets on the apical portion of panicles during late stage of panicle development. Cellular and physiological analyses revealed that the apical spikelets in the paab1-1 mutant undergo programmed cell death, accompanied by nuclear DNA fragmentation and accumulation of higher levels of H2O2 and malondialdehyde. Molecular cloning revealed that paab1-1 harbors a mutation in OsALMT7, which encodes a putative aluminum-activated malate transporter (OsALMT7) localized to the plasma membrane, and is preferentially expressed in the vascular tissues of developing panicles. Consistent with a function for OsALMT7 as a malate transporter, the panicle of the paab1-1 mutant contained less malate than the wild type, particularly at the apical portions, and injection of malate into the paab1-1 panicle could alleviate the spikelet degeneration phenotype. Together, these results suggest that OsALMT7-mediated transport of malate into the apical portion of panicle is required for normal panicle development, thus highlighting a key role of malate in maintaining the sink size and grain yield in rice and probably other grain crops.


Subject(s)
Hydrogen Peroxide/metabolism , Malates/metabolism , Organic Anion Transporters/metabolism , Oryza/genetics , Biological Transport , Cloning, Molecular , Edible Grain/genetics , Edible Grain/growth & development , Flowers/genetics , Flowers/growth & development , Malondialdehyde/metabolism , Organic Anion Transporters/genetics , Oryza/growth & development , Plant Proteins/genetics , Plant Proteins/metabolism
15.
Nat Plants ; 3: 17043, 2017 04 10.
Article in English | MEDLINE | ID: mdl-28394310

ABSTRACT

Grain size is a major determinant of grain yield in cereal crops. qSW5/GW5, which exerts the greatest effect on rice grain width and weight, was fine-mapped to a 2,263-bp/21-kb genomic region containing a 1,212-bp deletion, respectively. Here, we show that a gene encoding a calmodulin binding protein, located ∼5 kb downstream of the 1,212-bp deletion, corresponds to qSW5/GW5. GW5 is expressed in various rice organs, with highest expression level detected in young panicles. We provide evidence that the 1,212-bp deletion affects grain width most likely through influencing the expression levels of GW5. GW5 protein is localized to the plasma membrane and can physically interact with and repress the kinase activity of rice GSK2 (glycogen synthase kinase 2), a homologue of Arabidopsis BIN2 (BRASSINOSTEROID INSENSITIVE2) kinase, resulting in accumulation of unphosphorylated OsBZR1 (Oryza sativa BRASSINAZOLE RESISTANT1) and DLT (DWARF AND LOW-TILLERING) proteins in the nucleus to mediate brassinosteroid (BR)-responsive gene expression and growth responses (including grain width and weight). Our results suggest that GW5 is a novel positive regulator of BR signalling and a viable target for genetic manipulation to improve grain yield in rice and perhaps in other cereal crops as well.


Subject(s)
Brassinosteroids/metabolism , Edible Grain/genetics , Oryza/genetics , Plant Proteins/genetics , Signal Transduction , Edible Grain/growth & development , Oryza/growth & development , Oryza/metabolism , Plant Proteins/metabolism
16.
J Exp Bot ; 66(1): 271-81, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25385766

ABSTRACT

Drought is a recurring climatic hazard that reduces the crop yields. To avoid the negative effects of drought on crop production, extensive efforts have been devoted to investigating the complex mechanisms of gene expression and signal transduction during drought stress. Receptor-like kinases (RLKs) play important roles in perceiving extracellular stimuli and activating downstream signalling responses. The rice genome contains >1100 RLK genes, of which only two are reported to function in drought stress. A leucine-rich repeat (LRR)-RLK gene named Leaf Panicle 2 (LP2) was previously found to be strongly expressed in leaves and other photosynthetic tissues, but its function remains unclear. In the present study, it was shown that the expression of LP2 was down-regulated by drought and abscisic acid (ABA). Transgenic plants overexpressing LP2 accumulated less H2O2, had more open stomata in leaves, and showed hypersensitivity to drought stress. Further investigation revealed that transcription of LP2 was directly regulated by the zinc finger transcription factor DROUGHT AND SALT TOLERANCE (DST). In addition, LP2 was identified as a functional kinase localized to the plasma membrane and interacted with the drought-responsive aquaporin proteins OsPIP1; 1, OsPIP1; 3, and OsPIP2; 3. Thus, the findings provided evidence that the LRR-RLK LP2, transcriptionally regulated by the drought-related transcription factor DST, served as a negative regulator in drought response.


Subject(s)
Gene Expression Regulation, Plant , Oryza/growth & development , Oryza/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Factors/genetics , Abscisic Acid/metabolism , Adaptation, Biological , Droughts , Oryza/metabolism , Phylogeny , Plant Leaves/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/growth & development , Plants, Genetically Modified/metabolism , Protein Structure, Tertiary , Transcription Factors/metabolism
17.
Plant Cell Rep ; 33(9): 1581-94, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24917171

ABSTRACT

KEY MESSAGE: Mutation of the AM1 gene causes an albino midrib phenotype and enhances tolerance to drought in rice K(+) efflux antiporter (KEA) genes encode putative potassium efflux antiporters that are mainly located in plastid-containing organisms, ranging from lower green algae to higher flowering plants. However, little genetic evidence has been provided on the functions of KEA in chloroplast development. In this study, we isolated a rice mutant, albino midrib 1 (am1), with green- and white-variegation in the first few leaves, and albino midrib phenotype in older tissues. We found that AM1 encoded a putative KEA in chloroplast. AM1 was highly expressed in leaves, while lowly in roots. Chloroplast gene expression and proteins accumulation were affected during chlorophyll biosynthesis and photosynthesis in am1 mutants. Interestingly, AM1 was induced by salt and PEG, and am1 showed enhanced sensitivity to salinity in seed germination and increased tolerance to drought. Taken together, we concluded that KEAs were involved in chloroplast development and played important roles in drought tolerance.


Subject(s)
Antiporters/genetics , Chloroplasts/physiology , Gene Expression Regulation, Plant , Oryza/genetics , Potassium/metabolism , Amino Acid Sequence , Antiporters/metabolism , Chlorophyll/metabolism , Droughts , Germination , Molecular Sequence Data , Mutation , Oryza/physiology , Oryza/ultrastructure , Phenotype , Photosynthesis , Phylogeny , Plant Leaves/genetics , Plant Leaves/physiology , Plant Leaves/ultrastructure , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified , Recombinant Fusion Proteins , Salinity , Seedlings/genetics , Seedlings/physiology , Seedlings/ultrastructure , Seeds/genetics , Seeds/physiology , Seeds/ultrastructure , Sequence Alignment
18.
Mol Plant ; 7(8): 1329-1349, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24821718

ABSTRACT

Pentatricopeptide repeat (PPR) proteins comprise a large family in higher plants and modulate organellar gene expression by participating in various aspects of organellar RNA metabolism. In rice, the family contains 477 members, and the majority of their functions remain unclear. In this study, we isolated and characterized a rice mutant, white stripe leaf (wsl), which displays chlorotic striations early in development. Map-based cloning revealed that WSL encodes a newly identified rice PPR protein which targets the chloroplasts. In wsl mutants, PEP-dependent plastid gene expression was significantly down-regulated, and plastid rRNAs and translation products accumulate to very low levels. Consistently with the observations, wsl shows a strong defect in the splicing of chloroplast transcript rpl2, resulting in aberrant transcript accumulation and its product reduction in the mutant. The wsl shows enhanced sensitivity to ABA, salinity, and sugar, and it accumulates more H2O2 than wild-type. These results suggest the reduced translation efficiency may affect the response of the mutant to abiotic stress.


Subject(s)
Chloroplasts/metabolism , Oryza/cytology , Oryza/physiology , Plant Proteins/metabolism , RNA Splicing , Stress, Physiological , Abscisic Acid/pharmacology , Amino Acid Sequence , Chloroplasts/drug effects , Chloroplasts/genetics , Cloning, Molecular , Glucose/pharmacology , Hydrogen Peroxide/metabolism , Intracellular Space/drug effects , Intracellular Space/metabolism , Molecular Sequence Data , Mutation , Oryza/genetics , Oryza/metabolism , Phenotype , Plant Proteins/genetics , Plastids/drug effects , Plastids/metabolism , Protein Transport/drug effects , RNA Splicing/drug effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , Ribosomes/drug effects , Ribosomes/metabolism , Salinity , Stress, Physiological/drug effects
19.
Plant J ; 73(2): 190-200, 2013 Jan.
Article in English | MEDLINE | ID: mdl-26011250

ABSTRACT

Nitrogen is a crucial nutrient for plant growth and development. Arginine is considered to be an important amino acid for nitrogen transport and storage, playing a crucial role during plant seedling development. However, little is known about the role of arginine in nitrogen remobilization at the reproductive stage. We isolated a rice mutant nglf-1 with reduced plant height, small panicle and grain size, and low seed-setting rate (10% in nglf-1 compared to 93% in wild-type). Map-based cloning revealed that the mutant phenotype was caused by loss of function of a gene (OsARG) encoding an arginine hydrolysis enzyme, which is consistent with arginine accumulation in the mutant. The phenotype was partially corrected supplying exogenous nitrogen, and fully corrected by expression of a wild-type OsARG transgene. Over-expression of OsARG in rice (cv. Kitaake) increased grain number per plant under nitrogen-limited conditions. OsARG was ubiquitously expressed in various organs, but most strongly in developing panicles. The OsARG protein was localized in the mitochondria, consistent with other arginases. Our results suggest that the arginase encoded by OsARG, a key enzyme in Arg catabolism, plays a critical role during panicle development, especially under conditions of insufficient exogenous nitrogen. OsARG is a potential target for crop improvement.


Subject(s)
Arginase/metabolism , Oryza/enzymology , Oryza/growth & development , Plant Proteins/metabolism , Seeds/growth & development , Arginase/genetics , Cloning, Molecular , Gene Expression Regulation, Plant/physiology , Molecular Sequence Data , Mutation , Nitrogen/metabolism , Oryza/genetics , Plant Stems/growth & development , Plants, Genetically Modified , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL
...