Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
Commun Chem ; 7(1): 84, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38609430

ABSTRACT

The ability Gram-negative pathogens have at adapting and protecting themselves against antibiotics has increasingly become a public health threat. Data-driven models identifying molecular properties that correlate with outer membrane (OM) permeation and growth inhibition while avoiding efflux could guide the discovery of novel classes of antibiotics. Here we evaluate 174 molecular descriptors in 1260 antimicrobial compounds and study their correlations with antibacterial activity in Gram-negative Pseudomonas aeruginosa. The descriptors are derived from traditional approaches quantifying the compounds' intrinsic physicochemical properties, together with, bacterium-specific from ensemble docking of compounds targeting specific MexB binding pockets, and all-atom molecular dynamics simulations in different subregions of the OM model. Using these descriptors and the measured inhibitory concentrations, we design a statistical protocol to identify predictors of OM permeation/inhibition. We find consistent rules across most of our data highlighting the role of the interaction between the compounds and the OM. An implementation of the rules uncovered in our study is shown, and it demonstrates the accuracy of our approach in a set of previously unseen compounds. Our analysis sheds new light on the key properties drug candidates need to effectively permeate/inhibit P. aeruginosa, and opens the gate to similar data-driven studies in other Gram-negative pathogens.

2.
Sci Rep ; 14(1): 1793, 2024 01 20.
Article in English | MEDLINE | ID: mdl-38245528

ABSTRACT

We present an ensemble transfer learning method to predict suicide from Veterans Affairs (VA) electronic medical records (EMR). A diverse set of base models was trained to predict a binary outcome constructed from reported suicide, suicide attempt, and overdose diagnoses with varying choices of study design and prediction methodology. Each model used twenty cross-sectional and 190 longitudinal variables observed in eight time intervals covering 7.5 years prior to the time of prediction. Ensembles of seven base models were created and fine-tuned with ten variables expected to change with study design and outcome definition in order to predict suicide and combined outcome in a prospective cohort. The ensemble models achieved c-statistics of 0.73 on 2-year suicide risk and 0.83 on the combined outcome when predicting on a prospective cohort of [Formula: see text] 4.2 M veterans. The ensembles rely on nonlinear base models trained using a matched retrospective nested case-control (Rcc) study cohort and show good calibration across a diversity of subgroups, including risk strata, age, sex, race, and level of healthcare utilization. In addition, a linear Rcc base model provided a rich set of biological predictors, including indicators of suicide, substance use disorder, mental health diagnoses and treatments, hypoxia and vascular damage, and demographics.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Veterans , Humans , Veterans/psychology , Retrospective Studies , Cross-Sectional Studies , Prospective Studies , Suicide, Attempted , Machine Learning
3.
J Chem Theory Comput ; 19(9): 2658-2675, 2023 May 09.
Article in English | MEDLINE | ID: mdl-37075065

ABSTRACT

Interdependence across time and length scales is common in biology, where atomic interactions can impact larger-scale phenomenon. Such dependence is especially true for a well-known cancer signaling pathway, where the membrane-bound RAS protein binds an effector protein called RAF. To capture the driving forces that bring RAS and RAF (represented as two domains, RBD and CRD) together on the plasma membrane, simulations with the ability to calculate atomic detail while having long time and large length- scales are needed. The Multiscale Machine-Learned Modeling Infrastructure (MuMMI) is able to resolve RAS/RAF protein-membrane interactions that identify specific lipid-protein fingerprints that enhance protein orientations viable for effector binding. MuMMI is a fully automated, ensemble-based multiscale approach connecting three resolution scales: (1) the coarsest scale is a continuum model able to simulate milliseconds of time for a 1 µm2 membrane, (2) the middle scale is a coarse-grained (CG) Martini bead model to explore protein-lipid interactions, and (3) the finest scale is an all-atom (AA) model capturing specific interactions between lipids and proteins. MuMMI dynamically couples adjacent scales in a pairwise manner using machine learning (ML). The dynamic coupling allows for better sampling of the refined scale from the adjacent coarse scale (forward) and on-the-fly feedback to improve the fidelity of the coarser scale from the adjacent refined scale (backward). MuMMI operates efficiently at any scale, from a few compute nodes to the largest supercomputers in the world, and is generalizable to simulate different systems. As computing resources continue to increase and multiscale methods continue to advance, fully automated multiscale simulations (like MuMMI) will be commonly used to address complex science questions.


Subject(s)
Membrane Proteins , Molecular Dynamics Simulation , Membrane Proteins/chemistry , Cell Membrane/metabolism , Machine Learning , Lipids
4.
Sci Rep ; 12(1): 13339, 2022 08 03.
Article in English | MEDLINE | ID: mdl-35922450

ABSTRACT

Discovery of reliable signatures for the empirical diagnosis of neurological diseases-both infectious and non-infectious-remains unrealized. One of the primary challenges encountered in such studies is the lack of a comprehensive database representative of a signature background that exists in healthy individuals, and against which an aberrant event can be assessed. For neurological insults and injuries, it is important to understand the normal profile in the neuronal (cerebrospinal fluid) and systemic fluids (e.g., blood). Here, we present the first comparative multi-omic human database of signatures derived from a population of 30 individuals (15 males, 15 females, 23-74 years) of serum and cerebrospinal fluid. In addition to empirical signatures, we also assigned common pathways between serum and CSF. Together, our findings provide a cohort against which aberrant signature profiles in individuals with neurological injuries/disease can be assessed-providing a pathway for comprehensive diagnostics and therapeutics discovery.


Subject(s)
Nervous System Diseases , Proteomics , Cerebrospinal Fluid , Cohort Studies , Female , Humans , Male , Metabolomics , Neurons
5.
J Chem Theory Comput ; 18(8): 5025-5045, 2022 Aug 09.
Article in English | MEDLINE | ID: mdl-35866871

ABSTRACT

The appeal of multiscale modeling approaches is predicated on the promise of combinatorial synergy. However, this promise can only be realized when distinct scales are combined with reciprocal consistency. Here, we consider multiscale molecular dynamics (MD) simulations that combine the accuracy and macromolecular flexibility accessible to fixed-charge all-atom (AA) representations with the sampling speed accessible to reductive, coarse-grained (CG) representations. AA-to-CG conversions are relatively straightforward because deterministic routines with unique outcomes are achievable. Conversely, CG-to-AA conversions have many solutions due to a surge in the number of degrees of freedom. While automated tools for biomolecular CG-to-AA transformation exist, we find that one popular option, called Backward, is prone to stochastic failure and the AA models that it does generate frequently have compromised protein structure and incorrect stereochemistry. Although these shortcomings can likely be circumvented by human intervention in isolated instances, automated multiscale coupling requires reliable and robust scale conversion. Here, we detail an extension to Multiscale Machine-learned Modeling Infrastructure (MuMMI), including an improved CG-to-AA conversion tool called sinceCG. This tool is reliable (∼98% weakly correlated repeat success rate), automatable (no unrecoverable hangs), and yields AA models that generally preserve protein secondary structure and maintain correct stereochemistry. We describe how the MuMMI framework identifies CG system configurations of interest, converts them to AA representations, and simulates them at the AA scale while on-the-fly analyses provide feedback to update CG parameters. Application to systems containing the peripheral membrane protein RAS and proximal components of RAF kinase on complex eight-component lipid bilayers with ∼1.5 million atoms is discussed in the context of MuMMI.


Subject(s)
Lipid Bilayers , Molecular Dynamics Simulation , Humans , Lipid Bilayers/chemistry , Protein Structure, Secondary , Proteins/chemistry
6.
PLoS One ; 17(2): e0263047, 2022.
Article in English | MEDLINE | ID: mdl-35139110

ABSTRACT

Fitting Susceptible-Infected-Recovered (SIR) models to incidence data is problematic when not all infected individuals are reported. Assuming an underlying SIR model with general but known distribution for the time to recovery, this paper derives the implied differential-integral equations for observed incidence data when a fixed fraction of newly infected individuals are not observed. The parameters of the resulting system of differential equations are identifiable. Using these differential equations, we develop a stochastic model for the conditional distribution of current disease incidence given the entire past history of reported cases. We estimate the model parameters using Bayesian Markov Chain Monte-Carlo sampling of the posterior distribution. We use our model to estimate the transmission rate and fraction of asymptomatic individuals for the current Coronavirus 2019 outbreak in eight American Countries: the United States of America, Brazil, Mexico, Argentina, Chile, Colombia, Peru, and Panama, from January 2020 to May 2021. Our analysis reveals that the fraction of reported cases varies across all countries. For example, the reported incidence fraction for the United States of America varies from 0.3 to 0.6, while for Brazil it varies from 0.2 to 0.4.


Subject(s)
COVID-19/epidemiology , Argentina/epidemiology , Bayes Theorem , Brazil/epidemiology , Chile/epidemiology , Colombia/epidemiology , Humans , Incidence , Markov Chains , Mexico/epidemiology , Panama/epidemiology , Peru/epidemiology , Stochastic Processes , United States/epidemiology
7.
Sci Rep ; 12(1): 370, 2022 01 10.
Article in English | MEDLINE | ID: mdl-35013374

ABSTRACT

COVID-19 outbreaks have had high mortality in low- and middle-income countries such as Ecuador. Human mobility is an important factor influencing the spread of diseases possibly leading to a high burden of disease at the country level. Drastic control measures, such as complete lockdown, are effective epidemic controls, yet in practice one hopes that a partial shutdown would suffice. It is an open problem to determine how much mobility can be allowed while controlling an outbreak. In this paper, we use statistical models to relate human mobility to the excess death in Ecuador while controlling for demographic factors. The mobility index provided by GRANDATA, based on mobile phone users, represents the change of number of out-of-home events with respect to a benchmark date (March 2nd, 2020). The study confirms the global trend that more men are dying than expected compared to women, and that people under 30 show less deaths than expected, particularly individuals younger than 20 with a death rate reduction between 22 and 27%. The weekly median mobility time series shows a sharp decrease in human mobility immediately after a national lockdown was declared on March 17, 2020 and a progressive increase towards the pre-lockdown level within two months. Relating median mobility to excess deaths shows a lag in its effect: first, a decrease in mobility in the previous two to three weeks decreases excess death and, more novel, we found an increase of mobility variability four weeks prior increases the number of excess deaths.


Subject(s)
COVID-19/mortality , Cause of Death , Communicable Disease Control/statistics & numerical data , Transportation/statistics & numerical data , Travel/statistics & numerical data , Adult , Algorithms , COVID-19/epidemiology , COVID-19/virology , Communicable Disease Control/methods , Ecuador/epidemiology , Female , Geography , Humans , Male , Pandemics/prevention & control , Population Dynamics , Risk Factors , SARS-CoV-2/physiology , Survival Rate , Time Factors , Young Adult
8.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Article in English | MEDLINE | ID: mdl-34983849

ABSTRACT

RAS is a signaling protein associated with the cell membrane that is mutated in up to 30% of human cancers. RAS signaling has been proposed to be regulated by dynamic heterogeneity of the cell membrane. Investigating such a mechanism requires near-atomistic detail at macroscopic temporal and spatial scales, which is not possible with conventional computational or experimental techniques. We demonstrate here a multiscale simulation infrastructure that uses machine learning to create a scale-bridging ensemble of over 100,000 simulations of active wild-type KRAS on a complex, asymmetric membrane. Initialized and validated with experimental data (including a new structure of active wild-type KRAS), these simulations represent a substantial advance in the ability to characterize RAS-membrane biology. We report distinctive patterns of local lipid composition that correlate with interfacially promiscuous RAS multimerization. These lipid fingerprints are coupled to RAS dynamics, predicted to influence effector binding, and therefore may be a mechanism for regulating cell signaling cascades.


Subject(s)
Cell Membrane/enzymology , Lipids/chemistry , Machine Learning , Molecular Dynamics Simulation , Protein Multimerization , Proto-Oncogene Proteins p21(ras)/chemistry , Signal Transduction , Humans
9.
Int J Epidemiol ; 51(1): 54-62, 2022 02 18.
Article in English | MEDLINE | ID: mdl-34387670

ABSTRACT

BACKGROUND: In early 2020, Ecuador reported one of the highest surges of per capita deaths across the globe. METHODS: We collected a comprehensive dataset containing individual death records between 2015 and 2020, from the Ecuadorian National Institute of Statistics and Census and the Ecuadorian Ministry of Government. We computed the number of excess deaths across time, geographical locations and demographic groups using Poisson regression methods. RESULTS: Between 1 January and 23 September 2020, the number of excess deaths in Ecuador was 36 402 [95% confidence interval (CI): 35 762-36 827] or 208 per 100 000 people, which is 171% of the expected deaths in that period in a typical year. Only 20% of the excess deaths are attributable to confirmed COVID-19 deaths. Strikingly, in provinces that were most affected by COVID-19 such as Guayas and Santa Elena, the all-cause deaths are more than double the expected number of deaths that would have occurred in a normal year. The extent of excess deaths in men is higher than in women, and the number of excess deaths increases with age. Indigenous populations had the highest level of excess deaths among all ethnic groups. CONCLUSIONS: Overall, the exceptionally high level of excess deaths in Ecuador highlights the enormous burden and heterogeneous impact of COVID-19 on mortality, especially in older age groups and Indigenous populations in Ecuador, which was not fully revealed by COVID-19 death counts. Together with the limited testing in Ecuador, our results suggest that the majority of the excess deaths were likely to be undocumented COVID-19 deaths.


Subject(s)
COVID-19 , Aged , Censuses , Ecuador/epidemiology , Female , Hispanic or Latino , Humans , Male , Mortality , SARS-CoV-2
10.
Exp Biol Med (Maywood) ; 247(8): 672-682, 2022 04.
Article in English | MEDLINE | ID: mdl-34842470

ABSTRACT

Severe malarial anemia (SMA) is a leading cause of childhood morbidity and mortality in holoendemic Plasmodium falciparum transmission regions. To gain enhanced understanding of predisposing factors for SMA, we explored the relationship between complement component 3 (C3) missense mutations [rs2230199 (2307C>G, Arg>Gly102) and rs11569534 (34420G>A, Gly>Asp1224)], malaria, and SMA in a cohort of children (n = 1617 children) over 36 months of follow-up. Variants were selected based on their ability to impart amino acid substitutions that can alter the structure and function of C3. The 2307C>G mutation results in a basic to a polar residue change (Arg to Gly) at position 102 (ß-chain) in the macroglobulin-1 (MG1) domain, while 34420G>A elicits a polar to acidic residue change (Gly to Asp) at position 1224 (α-chain) in the thioester-containing domain. After adjusting for multiple comparisons, longitudinal analyses revealed that inheritance of the homozygous mutant (GG) at 2307 enhanced the risk of SMA (RR = 2.142, 95%CI: 1.229-3.735, P = 0.007). The haplotype containing both wild-type alleles (CG) decreased the incident risk ratio of both malaria (RR = 0.897, 95%CI: 0.828-0.972, P = 0.008) and SMA (RR = 0.617, 95%CI: 0.448-0.848, P = 0.003). Malaria incident risk ratio was also reduced in carriers of the GG (Gly102Gly1224) haplotype (RR = 0.941, 95%CI: 0.888-0.997, P = 0.040). Collectively, inheritance of the missense mutations in MG1 and thioester-containing domain influence the longitudinal risk of malaria and SMA in children exposed to intense Plasmodium falciparum transmission.


Subject(s)
Anemia , Complement C3 , Malaria, Falciparum , Anemia/genetics , Anemia/parasitology , Child , Complement C3/genetics , Genetic Predisposition to Disease , Humans , Malaria, Falciparum/complications , Malaria, Falciparum/genetics , Mutation , Plasmodium falciparum
11.
BMJ Glob Health ; 6(9)2021 Sep.
Article in English | MEDLINE | ID: mdl-34583975

ABSTRACT

Latin America has struggled to control the transmission of COVID-19. Comparison of excess death (ED) rates during the pandemic reveals that Ecuador is among the highest impacted countries. In this analysis, we update our previous findings with the most complete all-cause mortality records available for 2020, disaggregated by sex, age, ethnicity and geography. Our study shows that in 2020, Ecuador had a 64% ED rate (95% CI 63% to 65%) or 64% more deaths than expected. Men had a higher ED rate, 75% (95% CI 73% to 76%), than women's 51% (95% CI 49% to 52%), and this pattern of higher EDs for men than women held for most age groups. The only exception was the 20-29 age group, where women had 19% more deaths, compared to 10% more deaths for men, but that difference is not statistically significant. The analysis provides striking evidence of the lack of COVID-19 diagnostic testing in Ecuador: the confirmed COVID-19 deaths in 2020 accounted for only 21% of total EDs. Our significant finding is that indigenous populations, who typically account for about 5% of the deaths, show almost four times the ED rate of the majority mestizo group. Indigenous women in each age group have higher ED rates than the general population and, in ages between 20 and 49 years, they have higher ED rates than indigenous men. Indigenous women in the age group 20-29 years had an ED rate of 141%, which is commensurate to the ED rate of indigenous women older than 40 years.


Subject(s)
COVID-19 , Adult , COVID-19 Testing , Ecuador/epidemiology , Female , Humans , Male , Middle Aged , Pandemics , SARS-CoV-2 , Young Adult
12.
PLoS One ; 16(4): e0243337, 2021.
Article in English | MEDLINE | ID: mdl-33826643

ABSTRACT

Lipoarabinomannan (LAM), an amphiphilic lipoglycan of the Mycobacterium tuberculosis cell wall, is a diagnostic target for tuberculosis. Previous work from our laboratory and others suggests that LAM is associated with host serum lipoproteins, which may in turn have implications for diagnostic assays. Our team has developed two serum assays for amphiphile detection: lipoprotein capture and membrane insertion. The lipoprotein capture assay relies on capture of the host lipoproteins, exploiting the biological association of host lipoprotein with microbial amphiphilic biomarkers to "concentrate" LAM. In contrast, the membrane insertion assay is independent of the association between pathogen amphiphiles and host lipoprotein association, and directly captures LAM based on its thermodynamic propensity for association with a supported lipid membrane, which forms the functional surface of an optical biosensor. In this manuscript, we explored the use of these assays for the detection of LAM in sera from adults whose tuberculosis status had been well-characterized using conventional microbiological tests, and endemic controls. Using the lipoprotein capture assay, LAM signal/noise ratios were >1.0 in 29/35 (83%) individuals with culture-confirmed active tuberculosis, 8/13 (62%) individuals with tuberculosis symptoms, but no positive culture for M. tuberculosis, and 0/6 (0%) symptom-free endemic controls. To evaluate serum LAM levels without bias associated with potential differences in circulating host lipoprotein concentrations between individuals, we subsequently processed available samples to liberate LAM from associated host lipoprotein assemblies followed by direct detection of the pathogen biomarker using the membrane insertion approach. Using the membrane insertion assay, signal/noise for detection of serum LAM was greater than that observed using the lipoprotein capture method for culture-confirmed TB patients (6/6), yet remained negative for controls (2/2). Taken together, these results suggest that detection of serum LAM is a promising TB diagnostic approach, but that further work is required to optimize assay performance and to decipher the implications of LAM/host lipoprotein associations for diagnostic assay performance and TB pathogenesis.


Subject(s)
Lipopolysaccharides/blood , Lipoproteins/blood , Mycobacterium tuberculosis/metabolism , Tuberculosis/blood , Adult , Female , Humans , Male , Tuberculosis/diagnosis
13.
medRxiv ; 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33688690

ABSTRACT

BACKGROUND: In early 2020, Ecuador reported one of the highest surges of per capita deaths across the globe. METHODS: We collected a comprehensive dataset containing individual death records between 2015 and 2020 from the Ecuadorian National Institute of Statistics and Census and the Ecuadorian Ministry of Government. We computed the number of excess deaths across time, geographical locations and demographic groups using Poisson regression methods. RESULTS: Between January 1 st and September 23 rd , 2020, the number of excess deaths in Ecuador is 36,402 (95% CI: 35,762-36,827) or 208 per 10 5 population, which is 171% of the expected deaths in that period in a typical year. Only 20% of the excess deaths are attributable to confirmed COVID-19 deaths. Strikingly, in provinces that were most affected by COVID-19, such as Guayas and Santa Elena, the all-cause deaths are more than double the expected number of deaths that would have occurred in a normal year. The extent of excess deaths in men is higher than in women, and the number of excess deaths increases with age. Indigenous populations had the highest level of excess deaths among all ethnic groups. CONCLUSIONS: Overall, the exceptionally high level of excess deaths in Ecuador highlights the enormous burden and heterogeneous impact of COVID-19 on mortality especially in older age groups and indigenous populations in Ecuador that was not fully revealed by COVID-19 death counts. Together with the limited testing in Ecuador, our results suggest that the majority of the excess deaths were likely to be undocumented COVID-19 deaths.

14.
Biomolecules ; 11(1)2021 01 19.
Article in English | MEDLINE | ID: mdl-33477938

ABSTRACT

Seasonal flu is an acute respiratory disease that exacts a massive toll on human populations, healthcare systems and economies. The disease is caused by an enveloped Influenza virus containing eight ribonucleoprotein (RNP) complexes. Each RNP incorporates multiple copies of nucleoprotein (NP), a fragment of the viral genome (vRNA), and a viral RNA-dependent RNA polymerase (POL), and is responsible for packaging the viral genome and performing critical functions including replication and transcription. A complete model of an Influenza RNP in atomic detail can elucidate the structural basis for viral genome functions, and identify potential targets for viral therapeutics. In this work we construct a model of a complete Influenza A RNP complex in atomic detail using multiple sources of structural and sequence information and a series of homology-modeling techniques, including a motif-matching fragment assembly method. Our final model provides a rationale for experimentally-observed changes to viral polymerase activity in numerous mutational assays. Further, our model reveals specific interactions between the three primary structural components of the RNP, including potential targets for blocking POL-binding to the NP-vRNA complex. The methods developed in this work open the possibility of elucidating other functionally-relevant atomic-scale interactions in additional RNP structures and other biomolecular complexes.


Subject(s)
Influenza A virus/metabolism , Models, Biological , Nucleoproteins/metabolism , RNA, Viral/metabolism , DNA-Directed RNA Polymerases/metabolism , Models, Molecular , Nucleic Acid Conformation , Protein Binding , Protein Multimerization , RNA, Viral/chemistry , Structure-Activity Relationship
15.
mBio ; 12(1)2021 01 19.
Article in English | MEDLINE | ID: mdl-33468691

ABSTRACT

Antibiotic-resistant bacteria rapidly spread in clinical and natural environments and challenge our modern lifestyle. A major component of defense against antibiotics in Gram-negative bacteria is a drug permeation barrier created by active efflux across the outer membrane. We identified molecular determinants defining the propensity of small peptidomimetic molecules to avoid and inhibit efflux pumps in Pseudomonas aeruginosa, a human pathogen notorious for its antibiotic resistance. Combining experimental and computational protocols, we mapped the fate of the compounds from structure-activity relationships through their dynamic behavior in solution, permeation across both the inner and outer membranes, and interaction with MexB, the major efflux transporter of P. aeruginosa We identified predictors of efflux avoidance and inhibition and demonstrated their power by using a library of traditional antibiotics and compound series and by generating new inhibitors of MexB. The identified predictors will enable the discovery and optimization of antibacterial agents suitable for treatment of P. aeruginosa infections.IMPORTANCE Efflux pump avoidance and inhibition are desired properties for the optimization of antibacterial activities against Gram-negative bacteria. However, molecular and physicochemical interactions defining the interface between compounds and efflux pumps remain poorly understood. We identified properties that correlate with efflux avoidance and inhibition, are predictive of similar features in structurally diverse compounds, and allow researchers to distinguish between efflux substrates, inhibitors, and avoiders in P. aeruginosa The developed predictive models are based on the descriptors representative of different clusters comprising a physically intuitive combination of properties. Molecular shape (represented by acylindricity), amphiphilicity (anisotropic polarizability), aromaticity (number of aromatic rings), and the partition coefficient (LogD) are physicochemical predictors of efflux inhibitors, whereas interactions with Pro668 and Leu674 residues of MexB distinguish between inhibitors/substrates and efflux avoiders. The predictive models and efflux rules are applicable to compounds with unrelated chemical scaffolds and pave the way for development of compounds with the desired efflux interface properties.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacterial Outer Membrane Proteins/chemistry , Drug Resistance, Multiple, Bacterial/drug effects , Membrane Transport Proteins/chemistry , Models, Biological , Peptidomimetics/pharmacology , Pseudomonas aeruginosa/drug effects , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/metabolism , Bacterial Outer Membrane Proteins/antagonists & inhibitors , Bacterial Outer Membrane Proteins/genetics , Bacterial Outer Membrane Proteins/metabolism , Binding Sites , Biological Transport/drug effects , Gene Expression , Kinetics , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Microbial Sensitivity Tests , Models, Molecular , Peptidomimetics/chemical synthesis , Peptidomimetics/metabolism , Principal Component Analysis , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/metabolism , Structure-Activity Relationship , Thermodynamics
16.
iScience ; 23(12): 101836, 2020 Dec 18.
Article in English | MEDLINE | ID: mdl-33319171

ABSTRACT

Dense surface glycosylation on the HIV-1 envelope (Env) protein acts as a shield from the adaptive immune system. However, the molecular complexity and flexibility of glycans make experimental studies a challenge. Here we have integrated high-throughput atomistic modeling of fully glycosylated HIV-1 Env with graph theory to capture immunologically important features of the shield topology. This is the first complete all-atom model of HIV-1 Env SOSIP glycan shield that includes both oligomannose and complex glycans, providing physiologically relevant insights of the glycan shield. This integrated approach including quantitative comparison with cryo-electron microscopy data provides hitherto unexplored details of the native shield architecture and its difference from the high-mannose glycoform. We have also derived a measure to quantify the shielding effect over the antigenic protein surface that defines regions of relative vulnerability and resilience of the shield and can be harnessed for rational immunogen design.

17.
Proc Natl Acad Sci U S A ; 117(39): 24258-24268, 2020 09 29.
Article in English | MEDLINE | ID: mdl-32913056

ABSTRACT

The small GTPase KRAS is localized at the plasma membrane where it functions as a molecular switch, coupling extracellular growth factor stimulation to intracellular signaling networks. In this process, KRAS recruits effectors, such as RAF kinase, to the plasma membrane where they are activated by a series of complex molecular steps. Defining the membrane-bound state of KRAS is fundamental to understanding the activation of RAF kinase and in evaluating novel therapeutic opportunities for the inhibition of oncogenic KRAS-mediated signaling. We combined multiple biophysical measurements and computational methodologies to generate a consensus model for authentically processed, membrane-anchored KRAS. In contrast to the two membrane-proximal conformations previously reported, we identify a third significantly populated state using a combination of neutron reflectivity, fast photochemical oxidation of proteins (FPOP), and NMR. In this highly populated state, which we refer to as "membrane-distal" and estimate to comprise ∼90% of the ensemble, the G-domain does not directly contact the membrane but is tethered via its C-terminal hypervariable region and carboxymethylated farnesyl moiety, as shown by FPOP. Subsequent interaction of the RAF1 RAS binding domain with KRAS does not significantly change G-domain configurations on the membrane but affects their relative populations. Overall, our results are consistent with a directional fly-casting mechanism for KRAS, in which the membrane-distal state of the G-domain can effectively recruit RAF kinase from the cytoplasm for activation at the membrane.


Subject(s)
Proto-Oncogene Proteins p21(ras)/metabolism , raf Kinases/metabolism , Cell Membrane/metabolism , Molecular Dynamics Simulation
18.
J Chem Inf Model ; 60(6): 2838-2847, 2020 06 22.
Article in English | MEDLINE | ID: mdl-32453589

ABSTRACT

Drug discovery faces a crisis. The industry has used up the "obvious" space in which to find novel drugs for biomedical applications, and productivity is declining. One strategy to combat this is rational approaches to expand the search space without relying on chemical intuition, to avoid rediscovery of similar spaces. In this work, we present proof of concept of an approach to rationally identify a "chemical vocabulary" related to a specific drug activity of interest without employing known rules. We focus on the pressing concern of multidrug resistance in Pseudomonas aeruginosa by searching for submolecules that promote compound entry into this bacterium. By synergizing theory, computation, and experiment, we validate our approach, explain the molecular mechanism behind identified fragments promoting compound entry, and select candidate compounds from an external library that display good permeation ability.


Subject(s)
Anti-Bacterial Agents , Vocabulary , Algorithms , Anti-Bacterial Agents/pharmacology , Gram-Negative Bacteria , Machine Learning , Pseudomonas aeruginosa
20.
J Hum Genet ; 65(2): 99-113, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31664161

ABSTRACT

Cyclooxygenase-2 [(COX-2) or prostaglandin endoperoxide H2 synthase-2 (PTGS-2)] induces the production of prostaglandins as part of the host-immune response to infections. Although a number of studies have demonstrated the effects of COX-2 promoter variants on autoimmune and inflammatory diseases, their role in malaria remains undefined. As such, we investigated the relationship between four COX-2 promoter variants (COX-2 -512 C > T, -608 T > C, -765 G > C, and -1195 A > G) and susceptibility to malaria and severe malarial anemia (SMA) upon enrollment and longitudinally over a 36-month follow-up period. All-cause mortality was also explored. The investigation was carried out in children (n = 1081, age; 2-70 months) residing in a holoendemic Plasmodium falciparum transmission region of western Kenya. At enrollment, genotypes/haplotypes (controlling for anemia-promoting covariates) did not reveal any strong effects on susceptibility to either malaria or SMA. Longitudinal analyses showed decreased malaria episodes in children who inherited the -608 CC mutant allele (RR = 0.746, P = 1.811 × 10-4) and -512C/-608T/-765G/-1195G (CTGG) haplotype (RR = 0.856, P = 0.011), and increased risk in TTCA haplotype carriers (RR = 1.115, P = 0.026). Over the follow-up period, inheritance of the rare TTCG haplotype was associated with enhanced susceptibility to both malaria (RR = 1.608, P = 0.016) and SMA (RR = 5.714, P = 0.004), while carriage of the rare TTGG haplotype increased the risk of malaria (RR = 1.755, P = 0.007), SMA (RR = 8.706, P = 3.97 × 10-4), and all-cause mortality (HR = 110.000, P = 0.001). Collectively, these results show that SNP variations in the COX-2 promoter, and their inherited combinations, are associated with the longitudinal risk of malaria, SMA, and all-cause mortality among children living in a high transmission area for P. falciparum.


Subject(s)
Anemia/genetics , Cyclooxygenase 2/genetics , Malaria, Falciparum/genetics , Malaria/genetics , Polymorphism, Single Nucleotide/genetics , Promoter Regions, Genetic/genetics , Anemia/mortality , Child , Child, Preschool , Female , Genetic Predisposition to Disease , Genotype , Haplotypes , Humans , Infant , Kenya , Longitudinal Studies , Malaria/immunology , Malaria/mortality , Malaria/transmission , Malaria, Falciparum/immunology , Malaria, Falciparum/mortality , Malaria, Falciparum/transmission , Male , Risk
SELECTION OF CITATIONS
SEARCH DETAIL
...