Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Agric Food Chem ; 67(29): 8130-8137, 2019 Jul 24.
Article in English | MEDLINE | ID: mdl-31287295

ABSTRACT

Chlorantraniliprole (3-bromo-N-[4-chloro-2-methyl-6-(methylcarbamoyl)phenyl]-1-(3-chloro-2-pyridine-2-yl)-1H-pyrazole-5-carboxamide; CAP) was granted supplemental registration for use in rice cultivation in California through December, 2018. Previous work investigated the partitioning of CAP in California rice field soils; however, its degradation in soils under conditions relevant to California rice culture has not been investigated. The degradation of CAP in soils from two California rice fields was examined under aerobic and anaerobic conditions with varying salinity via microcosm experiments. Results indicate that soil properties governing bioavailability may have a greater influence on degradation than flooding practices or field salinization over a typical growing season. Differences between native and autoclaved soils (t1/2 = 59.0-100.2 and 78.5-171.7 days) suggest that biological processes were primarily responsible for CAP degradation; however, future work should be done to confirm specific biotic processes as well as to elucidate abiotic processes, such as degradation via manganese oxides and formation of nonextractable residues, which may contribute to its dissipation.


Subject(s)
Insecticides/chemistry , Oryza/growth & development , Soil Pollutants/chemistry , Soil/chemistry , ortho-Aminobenzoates/chemistry , Agriculture , California , Floods , Kinetics
2.
Anal Chem ; 85(9): 4686-93, 2013 May 07.
Article in English | MEDLINE | ID: mdl-23534560

ABSTRACT

Dietary supplements form an increasing part of the American diet, yet broadly applicable multiresidue pesticide methods have not been evaluated for many of these supplements. A method for the analysis of 310 pesticides, isomers, and pesticide metabolites in dried botanical dietary supplements has been developed and validated. Sample preparation involved acetonitrile:water added to the botanical along with anhydrous magnesium sulfate and sodium chloride for extraction, followed by cleanup with solid-phase extraction using a tandem cartridge consisting of graphitized carbon black (GCB) and primary-secondary amine sorbent (PSA). Pesticides were measured by gas chromatography-tandem mass spectrometry. Accuracy and precision were evaluated through fortifications of 24 botanicals at 10, 25, 100, and 500 µg/kg. Mean pesticide recoveries and relative standard deviations (RSDs) for all botanicals were 97%, 91%, 90%, and 90% and 15%, 10%, 8%, and 6% at 10, 25, 100, and 500 µg/kg, respectively. The method was applied to 21 incurred botanicals. Quinoxyfen was measured in hops (100-620 µg/kg). Tetraconazole (48 µg/kg), tetramethrin (15 µg/kg), methamidophos (50 µg/kg), and chlorpyrifos (93 µg/kg) were measured in licorice, mallow, tea, and tribulus, respectively. Quintozene, its metabolites and contaminants (pentachloroaniline, pentachlorobenzene, pentachloroanisole, and pentachlorothioanisole and hexachlorobenzene and tecnazene, respectively), with hexachlorocyclohexanes and DDT were identified in ginseng sources along with azoxystrobin, diazinon, and dimethomorph between 0.7 and 2800 µg/kg. Validation with these botanicals demonstrated the extent of this method's applicability for screening 310 pesticides in a wide array of botanical dietary supplements.


Subject(s)
Acetonitriles/isolation & purification , Dietary Supplements/analysis , Pesticide Residues/analysis , Solid Phase Extraction , Gas Chromatography-Mass Spectrometry , Molecular Structure
3.
J Agric Food Chem ; 52(21): 6361-72, 2004 Oct 20.
Article in English | MEDLINE | ID: mdl-15478993

ABSTRACT

A method was developed to determine pesticides in malt beverages using solid phase extraction on a polymeric cartridge and sample cleanup with a MgSO4-topped aminopropyl cartridge, followed by capillary gas chromatography with electron impact mass spectrometry in the selected ion monitoring mode [GC-MS(SIM)]. Three GC injections were required to analyze and identify organophosphate, organohalogen, and organonitrogen pesticides. The pesticides were identified by the retention times of peaks of the target ion and qualifier-to-target ion ratios. GC detection limits for most of the pesticides were 5-10 ng/mL, and linearity was determined from 50 to 5000 ng/mL. Fortification studies were performed at 10 ng/mL for three malt beverages that differ in properties such as alcohol content, solids, and appearance. The recoveries from the three malt beverages were greater than 70% for 85 of the 142 pesticides (including isomers) studied. The data showed that the different malt beverage matrixes had no significant effect on the recoveries. This method was then applied to the screening and analysis of malt beverages for pesticides, resulting in the detection of the insectide carbaryl and the fungicide dimethomorph in real samples. The study indicates that pesticide levels in malt beverages are significantly lower than the tolerance levels set by the United States Environmental Protection Agency for malt beverage starting ingredients. The use of the extraction/cleanup procedure and analysis by GC-MS(SIM) proved effective in screening malt beverages for a wide variety of pesticides.


Subject(s)
Beer/analysis , Edible Grain/chemistry , Gas Chromatography-Mass Spectrometry/methods , Pesticide Residues/analysis , Carbaryl/analysis , Fungicides, Industrial/analysis , Insecticides/analysis , Morpholines/analysis
4.
J Agric Food Chem ; 52(4): 672-6, 2004 Feb 25.
Article in English | MEDLINE | ID: mdl-14969514

ABSTRACT

Methoxyfenozide [3-methoxy-2-methylbenzoic acid 2-(3,5-dimethylbenzoyl)-2-(1,1-dimethylethyl) hydrazide; RH-2485], in the formulation of INTREPID, was applied to various crops. Analysis of methoxyfenozide was accomplished by utilizing liquid-liquid extraction and partitioning, followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Method validations for fruits, vegetables, and mint are reported. Methoxyfenozide mean recoveries ranged from 72 to 129% over three levels of fortification. The overall average of mean recoveries is 97 +/- 10%. The limit of quantitation for fruits, artichoke, cucumber, squash, and refined sugar was 0.010 ppm, with a detection limit of 0.005 ppm. For all other crops, the limit of quantitation was 0.050 ppm, with a detection limit of 0.025 ppm. No residues were found greater than the limit of quantitation in control samples. Residues above the limit of quantitation were found in all matrices except refined sugar. Foliage (bean, beet, pea, and radish) had greater residue levels of methoxyfenozide residue than their corresponding roots or pods. Other crop matrices contained <1.0 ppm of methoxyfenozide except artichoke, which had a mean of 1.10 ppm.


Subject(s)
Chromatography, Liquid/methods , Fruit/chemistry , Hydrazines/analysis , Juvenile Hormones/analysis , Mass Spectrometry/methods , Pesticide Residues/analysis , Vegetables/chemistry , Drug Stability , Mentha/chemistry , Plant Oils/chemistry
5.
J Agric Food Chem ; 51(5): 1148-61, 2003 Feb 26.
Article in English | MEDLINE | ID: mdl-12590449

ABSTRACT

A method was developed to determine pesticides in wines. The pesticides were extracted from the wine using solid-phase extraction on a polymeric cartridge, and the coextractives were removed with an aminopropyl-MgSO(4) cartridge. Analysis was performed using capillary gas chromatography with electron impact mass spectrometric detection in selective ion monitoring mode (GC-MSD/SIM). Three injections are required to analyze all 153 organohalogen, organonitrogen, organophosphate, and organosulfur pesticides and residues. Pesticides were confirmed by retention times of the target ions and three qualifier-to-target ion ratios. Detection limits for most of the pesticides were less than 0.005 mg/L, and quantitation was determined from approximately 0.01 to 5 mg/L. Spike recoveries were performed by fortifying red and white wines at 0.01 and 0.10 mg/L. At the 0.01 ppm level, the spike recoveries were greater than 70% for 116 and 124 pesticides (out of 153) in red and white wines, respectively, whereas at the higher spike concentration of 0.10 mg/L, the recoveries were greater than 70% for 123 and 128 pesticides in red and white wines, respectively. The recoveries of less than 70% were most likely from pesticide polarity or lability, resulting in the inefficient adsorption of the pesticide to the polymeric sorbent, ineffective elution of the pesticide from the sorbent, or thermal degradation of the pesticide under GC-MSD conditions.


Subject(s)
Alanine/analogs & derivatives , Aminoimidazole Carboxamide/analogs & derivatives , Gas Chromatography-Mass Spectrometry/methods , Hydantoins , Pesticide Residues/analysis , Wine/analysis , Alanine/analysis , Chromatography, High Pressure Liquid , Fungicides, Industrial/analysis , Insecticides/analysis , Organophosphorus Compounds , Pyrethrins , Quality Control
SELECTION OF CITATIONS
SEARCH DETAIL
...