Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Qual ; 45(4): 1234-42, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27380071

ABSTRACT

Environmental impacts attributable to beef feedlot production provide an opportunity for economically linked efficiency optimization. Eco-efficiency models are used to optimize production and processes by connecting and quantifying environmental and economic impacts. An adaptable, objective eco-efficiency model was developed to assess the impacts of dietary rations on beef feedlot environmental and fiscal cost. The hybridized model used California Net Energy System modeling, life cycle assessment, principal component analyses (PCA), and economic analyses. The model approach was based on 38 potential feedlot rations and four transportation scenarios for the US Great Plains for each ration to determine the appropriate weight of each impact. All 152 scenarios were then assessed through a nested PCA to determine the relative contributing weight of each impact and environmental category to the overall system. The PCA output was evaluated using an eco-efficiency model. Results suggest that water, ecosystem, and human health emissions were the primary impact category drivers for feedlot eco-efficiency scoring. Enteric CH emissions were the greatest individual contributor to environmental performance (5.7% of the overall assessment), whereas terrestrial ecotoxicity had the lowest overall contribution (0.2% of the overall assessment). A well-balanced ration with mid-range dietary and processing energy requirements yielded the most eco- and environmentally efficient system. Using these results, it is possible to design a beef feed ration that is more economical and environmentally friendly. This methodology can be used to evaluate eco-efficiency and to reduce researcher bias of other complex systems.


Subject(s)
Animal Feed , Animal Husbandry , Animals , California , Cattle , Environment , Red Meat , United States , Water
2.
J Environ Qual ; 44(4): 1038-48, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26437085

ABSTRACT

Biofuel policy changes in the United States have renewed interest in soybean [ (L.) Merr.] biodiesel. Past studies with varying methodologies and functional units can provide valuable information for future work. A meta-analysis of nine peer-reviewed soybean life cycle analysis (LCA) biodiesel studies was conducted on the northern Great Plains in the United States. Results of LCA studies were assimilated into a standardized system boundary and functional units for global warming (GWP), eutrophication (EP), and acidification (AP) potentials using biodiesel conversions from peer-reviewed and government documents. Factors not fully standardized included variations in NO accounting, mid- or end-point impacts, land use change, allocation, and statistical sampling pools. A state-by-state comparison of GWP lower and higher heating values (LHV, HHV) showed differences attributable to variations in spatial sampling and agricultural practices (e.g., tillage, irrigation). The mean GWP of LHV was 21.1 g·CO-eq MJ including outliers, and median EP LHV and AP LHV was 0.019 g·PO-eq MJ and 0.17 g·SO-eq MJ, respectively, using the limited data available. An LCA case study of South Dakota soybean-based biodiesel production resulted in GWP estimates (29 or 31 g·CO-eq MJ; 100% mono alkyl esters [first generation] biodiesel or 100% fatty acid methyl ester [second generation] biodiesel) similar to meta-analysis results (30.1 g·CO-eq MJ). Meta-analysis mean results, including outliers, resemble the California Low Carbon Fuel Standard for soybean biodiesel default value without land use change of 21.25 g·CO-eq MJ. Results were influenced by resource investment differences in water, fertilizer (e.g., type, application), and tillage. Future biofuel LCA studies should include these important factors to better define reasonable energy variations in regional agricultural management practices.

3.
J Environ Manage ; 149: 236-44, 2015 Feb 01.
Article in English | MEDLINE | ID: mdl-25463586

ABSTRACT

Stormwater treatment technologies to manage runoff during rain events are primarily designed to reduce flood risks, settle suspended solids and concurrently immobilise metals and nutrients. Life Cycle Assessment (LCA) is scarcely documented for stormwater systems despite their ubiquitous implementation. LCA modelling quantified the environmental impacts associated with the materials, construction, transport, operation and maintenance of different stormwater treatment systems. A pre-fabricated concrete vortex unit, a sub-surface sandfilter and a raingarden, all sized to treat a functional unit of 35 m(3) of stormwater runoff per event, were evaluated. Eighteen environmental mid-point metrics and three end-point 'damage assessment' metrics were quantified for each system's lifecycle. Climate change (kg CO2 eq.) dominated net environmental impacts, with smaller contributions from human toxicity (kg 1,4-DB eq.), particulate matter formation (kg PM10 eq.) and fossil depletion (kg oil eq.). The concrete unit had the highest environmental impact of which 45% was attributed to its maintenance while impacts from the sandfilters and raingardens were dominated by their bulky materials (57%) and transport (57%), respectively. On-site infiltrative raingardens, a component of green infrastructure (GI), had the lowest environmental impacts because they incurred lower maintenance and did not have any concrete which is high in embodied CO2. Smaller sized raingardens affording the same level of stormwater treatment had the lowest overall impacts reinforcing the principle that using fewer resources reduces environmental impacts. LCA modelling can serve as a guiding tool for practitioners making environmentally sustainable solutions for stormwater treatment.


Subject(s)
Conservation of Natural Resources/methods , Environment , Rain , Water Movements , Water Purification/methods , Climate Change , Fossil Fuels/analysis , Humans , Models, Theoretical , Particulate Matter , Water Purification/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL
...